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a b s t r a c t

Electroencephalogram (EEG) measures the neuronal activities in the form of electric currents

that are generated due to the synchronized activity by a group of specialized pyramidal cells

inside the brain. The study presents a brief comparison of various functional neuroimaging

techniques, revealing the excellent neuroimaging capabilities of EEG signals such as high

temporal resolution, inexpensiveness, portability, and non-invasiveness as compared to the

other techniques such as positron emission tomography, magnetoencephalogram, func-

tional magnetic resonance imaging, and transcranial magnetic stimulation. Different types

of frequency bands associated with the brain signals are also being summarized. The main

purpose of this literature survey is to cover the maximum possible applications of EEG

signals based on computer-aided technologies, ranging from the diagnosis of various

neurological disorders such as epilepsy, major depressive disorder, alcohol use disorder,

and dementia to the monitoring of other applications such as motor imagery, identity

authentication, emotion recognition, sleep stage classification, eye state detection, and

drowsiness monitoring. After reviewing them, the comparative analysis of the publicly

available EEG datasets and other local data acquisition methods, preprocessing techniques,

feature extraction methods, and the result analysis through the classification models and

statistical tests has been presented. Then the research gaps and future directions in the

present studies have been summarized with the aim to inspire the readers to explore more

opportunities on the current topic. Finally, the survey has been completed with the brief

description about the studies exploring the fusion of brain signals from multiple modalities.
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1. Introduction

EEG transforms Electroencephalogram means it is the contin-
uous recording of the electrical activity of the brain by placing
the metal electrodes over the scalp. The neuronal cells
spontaneously communicate with each other via generating
the electrical currents and remain active all the time even if a
person is sleeping or relaxing. The low cost, high flexibility,
high temporal resolution, non-invasiveness, ease of use,
portability and safe nature make EEG a powerful tool for the
brain imaging task as compared to the other functional
neuroimaging techniques such as positron emission tomog-
raphy (PET), magnetoencephalogram (MEG), functional mag-
netic resonance imaging (fMRI), and transcranial magnetic
stimulation (TMS).

Hans Berger (1873–1941), the German Physician [1] coined
the term 'electroencephalogram' to define the electrical
potentials occurring in the human brain. He took the first
EEG readings from the patients with ‘‘palliative trepanations’’
or having some defects in the skull by making use of metal
strips and galvanometer [2]. He was able to characterize the a

(‘‘slower and larger’’) and b (‘‘faster and smaller’’) rhythms and
concentrated on the changes occurring in the EEG patterns
while associating with the mental attention and cerebral
injuries. His findings opened the gateway for most of the
applications that are presently based on the EEG signals as
he observed that these brain signals were not irregular and
inconsistent, instead electrical changes revealed some peri-
odic patterns that help to deduce the occurrence of some
activity, e.g. changing the state from sleep (slow, very low
frequency, and high amplitude waves) to wakefulness (fast,
high frequency, and low amplitude waves). He was also
responsible for investigating the effects of anesthesia and
epilepsy on the EEG recordings [1].

EEG can record only those potential changes that occur
due to the synaptic transmissions. When the action potential
reaches at the axon terminal, neurotransmitters are releas-
ed at the synapses site [3], causing the exhibitory post synap-
tic graded potentials (EPSPs) or the inhibitory post synaptic
graded potentials (IPSPs) [4,5] to occur at the postsynaptic cells.
These potentials lead to the flow of ionic currents in the
extracellular space of the cell membrane, thus generating
the local field potentials with very small magnitudes. Research
studies conclude that the detection of electric fields is possible
only due to the synchronized activity by a group of few
specialized pyramidal neurons that are present in the cortical
regions of the brain [6,7]. The currents generated inside these
cells do not cancel out the effect of each other due to their
unique and stable orientation. The overall electric field
becomes much stronger when the postsynaptic graded
potentials for such group of neurons are summed up. This
summation actually helps in the measurement of EEG signals.

Different types of rhythms such as theta, delta, alpha, beta,
and gamma can be observed in the brain waves depending
upon the different functional states of the brain. Any subtle
changes in the frequency patterns of these waves help in
the diagnosis of certain neurological disorders or to conclude
the occurrence of some neuronal activity in response to some
external stimuli. The slow brain waves indicate the deep sleep
stage [8] in the humans or less power in alpha and theta bands
[9] in all the regions (central, occipital, frontal, parietal, and
temporal) are observed for the depressed patients when
compared to the normal subjects.

EEG signals are non-linear and non-stationary in nature.
The small variations in the voltage fluctuations of the EEG
measurements conclude the happening of some neuronal
activity. So the visual inspection of these signals varies with
the expertise experience. Moreover, the long EEG recordings
require a lot of time for their manual review and sometimes
the results may be inaccurate due to the presence of artifacts
in the signals. So the processing and the analysis of these
signals can be done with the help of computer-aided
technologies in order to get fast and accurate results. The
use of computer-aided technologies with EEG signals has
gained a widespread popularity, especially in the diagnosis of
various neurological and neuropsychiatric disorders such as
epilepsy [10,11], major depressive disorder (MDD) [12,13],
alcohol use disorder (AUD) [14,15], and dementia [16,17] such
as Alzheimer, mild cognitive impairment (MCI), Parkinson,
and dementia with Lewy bodies (DLB). EEG based application
of Motor Imagery has opened a new gateway in the field of
neuroprosthesis [18,19]. Apart from this, other research
domains such as identity authentication [20,21], sleep stage
classification [22], emotion recognition [23,24], eye state
detection [25,26], and drowsiness monitoring [27] are getting
prominent results with the use of physiological data such as
EEG.

The EEG signal processing and analysis is basically
performed in four steps: preprocessing the raw signals with
the help of filtering or some other techniques, then extracting
the most important information in the form of features from
them, further applying the feature selection methods for more
optimized results, and finally at the result analysis phase, the
disease diagnosis or the recognition of the different functional
states of the brain is made through the machine learning
models or the statistical tests. So the main aim of this research
study is to target the maximum number of EEG based research
applications available in the literature and to perform the
comparative analysis for:

(a) Different data collection methods in the form of publicly
available EEG datasets and other local data acquisition
studies.

(b) Various pre-processing methods such as down-sampling,
artifact handling, and feature scaling.

(c) Different categories of features using various feature
extraction methods.

(d) Post-processing methods such as feature selection and
dimensionality reduction techniques.

(e) Result analysis methods in the form of classification
algorithms and statistical tests.

The rest of the paper is organized as follows: the taxonomy
of the proposed study is explained in Section 2, the brief
comparison of the various functional neuroimaging techni-
ques is provided in Section 3, different types of brain rhythms
in Section 4, data collection process in Section 5, EEG signal
processing and analysis in Section 6, then the other EEG based
research studies with their findings are explained in Section 7,
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Section 8 summarizes the research gaps and the future
directions in the given studies, then a brief description about
the multi-modal fusion of brain signals has been given in
Section 9, and finally the paper has been concluded with its
future scope in Section 10. The list of acronyms and
abbreviations as summarized in Table 21 are provided in
Appendix A.

2. Taxonomy of the proposed study

The main aim of the present study is to inspire the readers
with the excellent neuroimaging capabilities of the EEG signals
and how the computer-aided technologies are used to monitor
the numerous applications by using a variety of signal pro-
cessing and classification algorithms. The idea is to explode
the market with the automated machine learning recognition
systems based on brain signals. This analysis is completed in
the following manner (as shown in Fig. 1): A total of 131
research papers have been surveyed to complete the current
study. Except four, all the studies are from the years 1999 to
2019. 3 handbooks, 103 journal papers, 9 book chapters, 13
conference papers, 1 Ph.D. thesis, 1 web-link, and 1 tutorial file
constitute the total number of studies. Apart from that, 15
web-links are included in the study for accessing the publicly
available datasets for various applications. Further categoriz-
ing the studies on the basis of the explained topics – there are
12 research studies for the comparison of various functional
neuroimaging techniques, 90 studies for the EEG applications
based on computer-aided technologies, 16 studies for brain
rhythms (out of 16, 8 are already included in the applica-
tion studies), 5 studies based upon multi-modal fusion of
brain signals, and the remaining 16 are based on the basic
knowledge related to the EEG signals such as history,
generation of electric currents inside the brain, types of
artifacts, comparison of feature extraction methods, and non-
linear analysis studies for EEG signals. The main purpose of
the present literature review is to target the maximum number
of EEG applications and explore a variety of signal processing
and classification algorithms used in those studies. Out of 90
application studies, 17 give the description about the public
datasets that are available online and 73 are further catego-
Fig. 1 – Taxonomy of th
rized on the basis of applications for which the EEG signals are
used – 14 are for epilepsy and seizures, 10 for depression, 9 for
MI, 8 for emotion state recognition, 8 for eye state recognition,
6 for sleep stage classification, 5 for alcoholism, 5 for dementia,
3 for driver drowsiness, 2 for identity authentication, 1 for
multi-class task recognition, and 4 for others (visual comfort
level of images, BCI based spelling interface, autism, and one
study based on reduced number of electrodes using the
concept of ERP), the total actually makes 75 because two
studies are based on multiple applications such as one study
based on epilepsy with alcoholism and another on epilepsy
with autism, so are counted twice. Also all the application
studies are classified on the basis of source of datasets used -
38 are based upon using the publicly available datasets and 35
are acquiring data locally, out of total, 2 are based upon the
both. So, this makes a total of 71 studies. Out of 73, the
information about the datasets is not given in the two studies.
After reviewing all the studies, firstly a brief comparison of
various functional neuroimaging techniques has been given,
then the description about the different brain rhythms has
been summarized briefly, and finally, the available EEG
application studies based on computer-aided technologies
are analysed from signal processing and classification per-
spective, with the target to extract the maximum information
in the form of four stages- preprocessing techniques, catego-
ries of features, post-processing methods, and finally the
result analysis using classification algorithms and statistical
tests. For preprocessing stage, 44 studies are mentioned in
Table 5 for artifact handling and 7 have been explained in
separate section of preprocessing details for public datasets for
artifact handling, 8 for downsampling (out of 8, 3 are based
upon preprocessing for public datasets), and 8 in Table 6 for
feature scaling. For feature extraction, 28 studies are based
on statistical features (Table 8), 19 for spectral (Table 9), 21
for non-linear (Table 10), and 7 for functional-connectivity
based features (Table 11). For postprocessing, 23 studies
are mentioned in Table 12 using different types of feature
selection techniques and 12 for dimensionality reduction in
Table 13. For result analysis, 51 are based on the classification
techniques (Table 16) and 14 on statistical tests (Table 17).
Apart from that, there are about 13 studies that have been
chosen separately and explained in Table 18 with their
e proposed study.
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important findings. These number of studies are also depicted
in Fig. 3. There are 5 studies focusing on the multi-modal
fusion of brain signals, that have been summarized in Table 20.

The idea is to make the readers aware that what level of
research has already been done on EEG signals, from signal
processing and classification perspective and how more
number of opportunities can be explored on this topic.

3. Comparison of functional neuroimaging
techniques

Functional neuroimaging is a brain imaging method that
encompasses a wide variety of technologies that are directly or
indirectly used to investigate the functional information of the
central nervous system. It is used to represent the metabolic
and physiological processes occurring inside the brain. It
includes various techniques: positron emission tomography
(PET), magnetoencephalogram (MEG), functional magnetic
resonance imaging (fMRI), electroencephalogram (EEG), and
transcranial magnetic stimulation (TMS) [28–30]. These tech-
niques are used to detect the various biomarkers that are
helpful in the diagnosis of various neuropsychiatric and
neurological disorders [31–34,29] such as Alzeihmer, Parkin-
son, alcoholism, schizophrenia, Huntington's disease, Tour-
ette syndrome, stress and mood disorders, etc. This is done by
identifying the dysfunctioning in the release of certain
substances like serotonin, dopamine, etc. in the brain. The
comparison of various functional neuroimaging techniques
has been graphically represented through Fig. 2.
Fig. 2 – Comparison of functiona
Comparison of functional neuroimaging techniques

(a) Measuring the neuronal activity indirectly/directly
PET involves the generation of cross-sectional 2D and

3D images of the brain giving the measurement of
radiations emitted by the ‘‘radiotracers’’ that are injected
into the blood stream [31,32]. The use of tracers helps to
map the blood flow differences in order to visually
represent the pathological conditions and functions of
the brain. fMRI aims at tracking the amount of blood
oxygen levels in the brain [35] and gives information about
the active brain regions during certain activities. It is
performed by using a signal method called as BOLD (Blood
Oxygenation Level Depredent signal) [33,29,36,32,30], i.e.
the variations occurring in the intensities of the signal as a
result of changing oxygen levels in the blood due to the
occurrence of some neuronal activity. In order to under-
stand the complex brain functionality, the subjects are
made to perform certain tasks in response to stimuli
(visual, auditory and so on) while present in the scanner.
Thus, both fMRI and PET give an indirect measurement of
the brain's electrical activities. MEG [36,30] is used to
directly measure the brain functionality by recording the
magnetic fields with the help of highly sensitive magnet-
ometers called as SQUIDs (superconducting quantum
interference devices). EEG directly records and interprets
the electrical activity of the brain by using the metal
electrodes placed over the scalp. The electric currents are
generated by the synchronization of millions of active
neurons. Then, TMS is also based upon the direct
l neuroimaging techniques.
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measurement of the neuronal activity by stimulating the
nerves cells of the brain with the electric simulator. The
functionality of the specific brain areas can be tested
through the process of ‘‘virtual lesions’’ in which the
disruptions to the different brain areas is made temporari-
ly and in a reversible manner [37].

(b) Based on invasive/non-invasive
In PET, it is required to inject a radioactive and positron

emitting contrast elements into the subject's body, thus
making it an invasive methodology while all other
techniques are based upon non-invasive methodology.

(c) Based on spatial/temporal resolution
fMRI has high temporal resolution than that of PET but

less than that of EEG, MEG, and TMS [38,30,37]. fMRI and
PET can never match the temporal resolution [36,38] of
electrophysiological signals because it involves the indi-
rect measurement of the brain activity through the
hemodynamic changes. The temporal resolutions for the
methods PET, fMRI, MEG, EEG, and TMS are of the order of
>10 s [36,30,37], >1 s [36,30], <1 ms [36,30,37], <1 ms
[36,30,37], and <1/2 s [37], respectively.

fMRI has the highest spatial resolution [30,35] (order of
millimetres) than that of PET, MEG, EEG, and TMS, thus
helps to do the good quality anatomy analysis of images.
MEG has high spatial resolution than EEG [30]. The spatial
resolutions for the methods PET, fMRI, MEG, EEG, and TMS
are of the order of 5–20 mm [37], 1–5 mm [36,37], >5 mm
[37], >10 mm [37], and 5–10 mm [37], respectively.

MEG and EEG offer the highest temporal resolution than
other techniques that is highly demanded in measuring
the complex functional events occurring dynamically in
the brain.

(d) Cost
Except EEG and TMS, the other functional imaging

techniques are very expensive [36,30]. Like for MEG, the
strength of magnetic field inside the brain is very weak, so
it is important to have magnetically shielded devices and
rooms in which those are measured thus, making the MEG
devices highly expensive (in millions of dollars) whereas
EEG and TMS are comparatively inexpensive (in thou-
sands).

(e) Portability
EEG and TMS are portable techniques while PET, fMRI,

and MEG have to be performed in some confined place [30].

Unlike PET and fMRI, EEG directly measures the electrical
activity of the brain and does not require the subject to be
exposed to any magnetic fields or injected with any radio-
tracers, thus making the EEG tests to be very safe. The excellent
temporal resolution and the reasonable spatial resolution make
EEG a perfect candidate for recording the complex neuronal
activities occurring dynamically on a temporal scale of
milliseconds [39]. Although MEG has comparable temporal
resolution as that of EEG but it has its own limitations. MEG is
insensitive to some of the sources that are radially oriented
while EEG has higher sensitivity than MEG so it is equally able to
detect all the source orientations very well. EEG has the
capability to deeply analyse the sources while MEG detects the
sources superficially. EEG is less expensive and portable in
nature as compared to the other techniques except TMS. But
TMS is having its own drawbacks such as, it is not suitable for
studying the functions in the temporal lobe because the
temporalis muscle is contracted painfully with the TMS
stimulation [37] and secondly, headaches or seizures may
occur if the safety measures are not followed while undergoing
TMS [30]. Thus, the low cost, high flexibility, high temporal
resolution, non-invasiveness, ease of use, portability, and high
density recording capability make EEG a powerful tool for the
brain imaging task, especially for studying the dynamically
occurring complex processes of the brain.

4. Brain rhythms

Due to the extremely complex patterns generated by the firing
of billions of neurons, the signals consist of a mixture of
various base frequencies. The researchers have classified
those varied frequency ranges into some sub-groups, known
as the frequency bands. Each of these frequency bands
represents a different cognitive or attentional state of a brain.
The history of these waves [5,8] can be briefly traced as – in
1929, Berger introduced the term ‘‘alpha’’ and ‘‘beta’’ [1]. In
1934, Adrian and Matthews gave a significant contribution that
the alpha rhythms of 10–12 Hz are dominant in the human
brain when a person is in the resting state with his eyes closed
and are mainly identified from the occipital region of the
cerebral cortex [41]. In 1938, the term ‘‘gamma’’ was intro-
duced by Jasper and Andrews with the frequencies of greater
than 30–35 Hz. In 1936, Walter introduced the term ‘‘delta’’ for
all those frequencies which lie below the alpha band. He also
defined the frequency range of 4–7.5 Hz for ‘‘theta’’ waves. The
idea of theta was clearly introduced in 1944 by Walter and
Dovey [42]. The fuzzy upper and lower frequency limits are
available for these frequency bands in the literature. So,
various brain rhythms with their frequency ranges [8], regions
of occurrence and characteristics [5,8,43,44] have been
generalized in Table 1.

The other research studies have used some other variants
of the above brain rhythms depending upon the requirement
of certain frequency bands for the analysis of particular
application. These are summarized in Table 2.

5. Data collection studies

The different research applications based on EEG signals have
either used the publicly available datasets or have themselves
created their own datasets but have not released them
publicly. So, the data collection process can be divided as:
publicly available datasets and other locally collected data
acquisition methods. These are shown in Fig. 3.

5.1. Publicly available EEG datasets

Table 3 gives the description about the publicly available
datasets including – the name with which that dataset is
available online, their web links, number of classes in which
the EEG signals have been distinguished, number of subjects
involved in the experiments, devices used for collecting the
EEG signals, and the sampling rate with which the data has



Table 1 – Brain rhythms.

Rhythm Frequency
range (in Hz)

Regions Characteristics

Gamma (g) >30 Fronto-central areas [5] � Sometimes known as fast beta waves.
� Rarely occur in the brain area, so can be used as an indicator to diagnose
certain neurological disorders.
� Having the highest frequencies with the lowest amplitudes.
� Functional integration of activities occurring transiently.
� Help to get the brain locations responsible for voluntary movements
(such as movement of left and right index finger, right toes, etc.)

Beta (b) 14–30 � Mostly found in normal adults.
Parietal, somatosensory,
frontal, and motor areas [43]

� Increased attention and alertness.

� Increasing levels of beta may be obtained in
panic condition.
� May be increased due to the bone defects or in the regions
with tumours.
� Amplitudes generally less than 30 mV [5,8].

Alpha (a) 8–13 Occipital and parietal regions [44] � Relaxed with closed eyes and wakefulness state.
� Greatly affected during the menstrual cycle
� Attenuation in alpha frequencies can be used for assessing the anxiety
and emotional tension of the subjects.
� Generally have an amplitude of less than 50mV [5].

Theta (u) 4–7.5 Hippocampus region [8] � Abnormal in adults, common for young children below 13 years.
� Sub-conscious activity of the brain.
� Deeply relaxed and meditated mind state.
� An increase in the theta band power under testing condition depicts the
memory demands [43].
� Arise of these waves in normal subjects shows the change from
conscious to the drowsy state.

Delta (d) 0.1–3.5 Mostly in thalamus region [8] � Predominate in new born babies, rarely present in adults with normal
state during waking condition.
� Observed at third sleep stage known as slow wave sleep (SWS).
� Artifacts generated from the muscles of the jaw and the neck are
generally confused with the delta rhythms.
� ‘‘Slow’’ waves having the ‘‘highest’’ amplitudes (75–200 mV) [43].

Table 2 – Other brain rhythms.

Purpose Sub-bands with frequency limits (in Hz) References

Sleep stage classification � Sigma waves (12–16) and k-complex waves [45]
� b1 (14–22) and b2 (22–31) [46]

Emotion recognition � Low alpha (8–10) [47]
Depression or stress recognition � Low beta (13–15), beta (15–20) and high beta (20–38) [48]

� Theta (Fc � 6) to (Fc � 2) and beta (Fc + 2) to (Fc + 26) where Fc is the
central maximum frequency in alpha band

[49]

Alcoholism � Beta (12–25) and high beta (25–30), gamma (30–40) and high gamma
(40–50)

[50]

Dementia (Alzeihmer, MCI and DLB) � Beta 1 (13–19) and beta 2 (19–30) [51]
� Alpha 1 (8–10) and alpha 2 (10–13) [52]
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been stored. The last column gives the references of different
research studies that have used these datasets for different
purposes such as alcoholism, eye state detection, epilepsy and
seizure detection, motor imagery, emotion recognition, sleep
stage classification, identity authentication, multi-task recog-
nition, and drowsiness detection.

5.2. Local data acquisition studies

Table 4 gives the description about the various data acquisition
studies that have themselves created their own datasets and
have not released them publicly. The description includes-
purpose of EEG data collection, details of subjects involved in
the experiments, devices used, number of EEG channels used
for data acquisition, sampling rate/recording time/electrode
impedance (EI), state in which the data has been collected (can
be relaxed or task based), references of the research studies that
have carried that process. The reviewed studies for these locally
collected datasets include the applications such as dementia,
depression, motor imagery, emotion recognition, identity
authentication, alcoholism, eyes state detection, driver drows-
iness/fatigue detection, and multi-class task recognition.



Fig. 3 – EEG data collection, signal processing, and result analysis.
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6. EEG signal processing and analysis

The dynamically changing functional states of the brain are
easily captured in the small variations of the EEG readings.
Also, the EEG of the normal person differs from the abnormal
one. So it is very important to identify those changes by
applying a series of signal processing and analysis mecha-
nisms with the help of computer-aided technologies. This is
carried out in four stages – pre-processing, feature extraction,
post-processing and result analysis. These are shown in Fig. 3.
The raw signals can be directly fed to the result analysis phase
for classification or statistical analysis, i.e. any of the first three
stages can be skipped in the processing mechanism depending
upon the requirement of the application. Like in some of the
research studies where the deep neural architectures are used
for the data analysis, any feature extraction or feature
selection is not required to be performed manually. Also in
other cases, if the data is already pre-processed or the features
are already extracted, especially for the publicly available
datasets, then any of those steps can also be skipped. Again if
the extracted feature set is small, then there is no need for
post-processing that involves the feature selection or di-
mensionality reduction methods. Finally, at the result analysis
phase, the classification or the statistical analysis is made with
the aim of diagnosing some abnormality or recognizing the
different functional states of the brain to monitor some
application. The values inside the parenthesis in Fig. 3 gives
the information about the number of application studies that
have worked upon the corresponding techniques.
6.1. Pre-processing

The pre-processing methods applied in the research studies
can be broadly divided into three categories- downsampling,
artifact handling and feature scaling, as explained below:

(a) Downsampling
The data collected by the different EEG devices is

downsampled to certain ranges depending upon the
requirement of an application. Downsampling to 16 Hz
[105], 64 Hz [21], from 512 to 64 Hz [18], 256 to 16 Hz [104],
and 2400 to 600 Hz [20] is done in the research studies
depending upon the requirement of an application.

(b) Artifact handling
Artifacts are not generated from the cortical activity but

due to the errors originated from the experimental
settings, environment noise or biological artifacts. The
artifact signals can be broadly categorized into two classes
depending upon their origin [40,115] [116]: (i) Technical or
extrinsic artifacts: These arise due to the technical issues or
some external factors in the data collecting environment
such as due to the misplacement of electrodes, powerline
interference (50–60 Hz) or the electromagnetic interference
in the cables or other devices, etc., and (ii) Physiological or
intrinsic artifacts: Different types of physiological signals
generated inside the human body act as the artifacts
during the EEG data collection process.

These include eye movements or blinks (or electro-
oculogram (EOG) artifacts), muscle activities (or electro-
myogram (EMG) artifacts), cardiac activities (or



Table 3 – Public datasets.

Dataset Web link No. of classes Subjects Device Sampling
rate (in Hz)

References

UCI dataset for Alcohol [53] http://kdd.ics.uci.edu/databases/eeg/
eeg.data.html

2 (Control and alcohol) 122 61 electrode cap (ECI, Electrocap
International) + 3 reference channels
+ horizontal and vertical EOG

256 [14,54,55]

UCI dataset for Eye State [56] https://archive.ics.uci.edu/ml/datasets/
EEG+Eye+State

2 (Eyes open and close) 1 Neuroheadset EmotivEpoc� 14
channels

128 [57–59,26]

Bonn university database
[60]

http://www.meb.unibonn.de/
epileptologie/science/physik/eegdata.
html

3 (Control, interictal and ictal/
epileptic)

10 128-Channel amplifier system 173.61 [55,61–68,10,11]

Bern Barcelona Database [69] https://www.upf.edu/web/mdm-dtic/
datasets

2 (intercranial signals with
categories- ‘‘focal’’ and ‘‘non-
focal’’)

5 Intracranial strip along with depth
electrodes manufactured by AD-TECH
(Racine, WI, USA)

512 [70]

Seizure-Prediction data [71] https://www.kaggle.com/c/
seizure-prediction/data

2 (pre-ictal and inter-ictal) 5 dogs and
2 patients

16 sub-dural conductors inserted into
canine's head (for dogs) Patient 1 = 8
depth electrodes, patient 2 = 3 * 8 sub-
dural electrodes

400 (for dogs),
5000 Hz
(2 patients)

[72]

CHB-MIT Scalp EEG Database
[73]

https://archive.physionet.org/pn6/
chbmit/

2 (seizure and non-seizure) 23 An array of 23-EEG channels 256 [67,74]

Autism dataset by KAU,
Saudi Arabia [75]

https://malhaddad.kau.edu.sa/
Pages-BCI-Datasets-En.aspx

2 (normal and autistic) 19 16 Ag/Agcl electrodes, g.tec EEG cap, g.
tec GAMMAbox, g.tec USBamp and
BCI2000

256 [67]

BCI competition II Dataset-III
[76]

http://www.bbci.de/competition/ii/ 2 (Left or Right hand imagery
movement)

1 G.tec amplifier and a set of Ag/Agcl
electrodes

128 [77,78]

DEAP database [79] http://www.eecs.qmul.ac.uk/mmv/
datasets/deap/

Labels- valence, arousal,
dominance and liking

40 Biosemi ActiveTwo with 32 EEG
channels

512 [80,47,81,21]

BCI Competition III dataset
IV-a [82]

http://www.bbci.de/competition/iii/ 2 (Right foot and right hand) 5 BrainAmp amplifier system with 128
channel electrode cap

100 [83,84]

Physionet EEG Motor
Movement/Imagery [85]
[86]

https://physionet.org/pn4/eegmmidb/
and http://www.bci2000.org

Contains the two baseline tasks
and four motor imagery tasks

109 BCI 2000 system consisting of 64
channels

160 [87,25,88]

Sleep EDF https://physionet.org/physiobank/
database/sleep-edf/

Sleep stages according to rules
by Rechtschaffen and Kales
(Wake, REM, Stage 1, Stage 2,
Stage 3, and Stage 4)

8 PSGs
(sleep edf)

Four channel cassette recorder and
telemetric system and contains two EEG
channels (FpzCz and PzOz), horizontal
EOG data and EMG signals

100 [45,22,46,89]

Sleep EDF Database
[Expanded] [90,86] [91] [92]

https://physionet.org/physiobank/
database/sleep-edfx/

197 PSGs
(expanded)

MIT-BIH Polysomnographic
Database [93] [86]

https://physionet.org/physiobank/
database/slpdb/

Sleep stages defined according
to rules by Rechtschaffen and
Kales

16 3 channels – C3-O1, C4-A1 and O2-A1 250 [94,95]

Sleep Heart Health Study
(SHHS)-1 [96]

https://sleepdata.org/datasets/shhs/
pages

Sleep stages defined according
to rules by Rechtschaffen and
Kales-Wake, N1, N2, N3, N4,
and REM

5,793 Gold cup electrodes for two EEG
channels (C4/A1) and (C3/A2)

125 [97]
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Table 4 – Other data acquisition studies.

Purpose Subjects Device Channels Sampling rate/
Recording time/EI

Recording state Refs.

Dementia (Alzheimer,
MCI, Parkinson, and
DLB)

HC: 37 (M: 12, F: 25, age = 76),
MMSE = 29, MCI: 37 (M: 16, F: 21,
age = 76.6), MMSE = 27.25, AD: 37 (M: 12,
F: 25, age = 81.55), MMSE = 21.5, Total:
111

19-channel system (XLTEK®, Natus
Medical, Plesanton, CA, USA)

19 200 Hz/5 min Relaxed awake with
eyes closed

[51]

HC: 30 (age = 70–76), MMSE = 28–30, AD:
30 (age = 74–78), MMSE = 12–15

Symtop amplifier 16 + 2 Ref (linked
earlobes A1 and A2)

1024 Hz/30 min/
EI ≤ 3 KV

EC, EO [17]

ADhall+: 36 (M:17, F: 19, age: 69.41
� 7.74), MMSE = 19 (n = 33), ADhall-: 108
(M: 51, F: 57, age: 69.41 � 7.37),
MMSE = 21 (n = 108), DLBhall+: 29 (M: 20,
F: 9, age: 70.76 � 9.51), MMSE = 23
(n = 24)

OSG digital equipment (Brainlab and
BrainRT®; OSG B.V.Belgium)

21 500 Hz/20 min/
EI < 5 KV

Resting state awake [52]

AD: 10 (M: 5, F: 5, age = 69.4 � 9.2),
MMSE = 16.2, HC: 10 (M: 4, F: 6,
age = 68.7 � 7.7), MMSE = 30

TrueScan 32 21 200 Hz EC [98]

PD: 20 (59.05 � 5.64, M: 10, F: 10, MMSE:
26.90 � 1.51), HC: 20 (58.10 � 2.95, F: 11,
M: 9, MMSE: 27.15 � 1.63)

Emotiv Epoc 14 128 Hz/5 min EC [16]

Depression or stress HC: 18 (M: 18, F: 0, college aged) Emotiv Epoc neuroheadset 14 + 2 Ref 128 Hz Mild stress is induced
in response to stimuli
presentation module
under congruent and
incongruent
conditions

[23]

HC: 13 (M: 5, F: 8, age = 38.7 � 15.8),
MDD: 13 (M: 5, F: 8, age = 38.7 � 15.8)

Neuroscan synamps2 (compumedics,
NC, USA)

30 + avg (M1, M2) taken
as reference
+ Horizontal EOG
+ Vertical EOG

1000 Hz/2 min (EO) and
30 min (EC)/EI < 10 KV

EO and EC [49]

HC: 30 (age = 38.227 � 15.64), MDD: 33
(age = 40.33 � 12.861)

EEG cap attached to Brain Master
systems

19 (1 Linked ear ref) 256 Hz/5 min each EO
and EC

EO and EC [9]

7 subjects out of 11 with high cortisol
levels (M: 11, F: 0, age = 37.9 � 8.8)

Emotiv Epoc+ 14 128 Hz Under working
condition at onsite and
offsite construction
site

[48]

HC: 45 (M: 20, F: 25, age = 33.7 � 10.2),
MDD: 45 (M: 22, F: 23, age = 33.5 � 10.7)

19 electrodes placed over the scalp 19 256 Hz/5 min EC [99]

HC: 15 (age = 20–50), MDD: 15 (age = 20–
50)

1 bipolar EEG channels from left and
right hemisphere each

2 256 Hz/5 min (EO and
EC each)

EO and EC [100,13]

HC: 30 (M: 21, F: 9, age = 38.227 � 15.64),
MDD: 34 (M: 16, F: 18, age = 40.33
� 12.861)

EEG sensor cap with amplifier from
Brain Master system

19 (1 Linked ear ref) 256 Hz/5 min each EO
and EC

EO and EC [12]

HC: 204 (M: 68, F: 136, age = 27.46 � 9.61),
MDD: 144 (M: 58, F: 86, age = 27.65
� 9.50)

MUSE EEG headband 5 (FPz as ref) 220 Hz Task based on
watching 8 short
videos

[101]
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Table 4 (Continued )

Purpose Subjects Device Channels Sampling rate/
Recording time/EI

Recording state Refs.

HC: 23 (M: 23, age = 18–28) Mistar system, MCScap-26 hat for EEG,
30 Ag/Agcl electrodes

5 (FPz as ref) 256 Hz/1 min Recording during EC
and EO, before,
immediately after, and
after 20 min of the test
(TSST – trier social
stress test)

[102]

Motor imagery HC:10 (M: 5, F: 5, age = 26.3 � 5.4) EEG cap with four g.USBamp amplifiers
(g.tec, Graz, Austria)

60 + 3 EOG, Ref on left
ear and ground on
right ear

512 Hz/EI < 5 KV Paradigm where the
participants have to
look at goal on screen
and do movements
accordingly

[103]

HC:3 (M: 1, F: 2 age = 22–24) EEG cap with 5 g.USBamp amplifiers (g.
tec, Graz, Austria)

68 + 3 EOG, Ref on left
mastoid and ground on
right mastoid

512 Hz Based on self-paced
center out reaching
task

[18]

HC:9 (M: 5, F: 4, age = 26.1 � 4.3) EEG cap with 5 g.USBamp amplifiers (g.
tec, Graz, Austria)

68 + 3 EOG, Ref on left
mastoid and ground on
right mastoid

256 Hz Based on imagining
rhythmic movements
of the right arm in
horizontal and vertical
plane in response to
arrow on the screen

[104]

HC: 15 EEG cap with g.USBamps (g.tec, Austria) 61 channels – Based on performing
the hand movements
according to the
presented cues on the
screen

[105]

Emotion recognition HC: 28 (M: 13, F: 15, avg age = 23.62) MUSE headband 4 220 Hz (raw data),
10 Hz (features)

Based on video stimuli [24]

HC: 15 (M: 8, F: 7, age = 29.42 � 4.02),
MDD:15 (M: 8, F: 7, age = 30.92 � 3.65)

EasyCap with BrainAmp DC (Brain
Products, Munich, Germany)

16 250 Hz/15 min (3 min
each for different
condition)/EI < 10 KV

Resting state + In
response to audio
stimuli (noise and
music)

[106]

HC: 24 Biopac provided electrode cap with 10
Ag/Agcl electrodes and MP 150 system

3 electrodes (Fz, Cz, Pz) 500 Hz The emotions have
been evoked by using
images from IAPS
belonging to the four
quadrants (LVHA,
HVHA, HVLA, LVLA).

[107]

HC: 10 (M: 8 and F:2, mean age = 30.6
years and SD = 13.73 years)

Emotiv Epoc+ 14 128 Hz images from MUG
database from
categories of happy,
angry, and neutral
were shown to the
participants

[108]
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Table 4 (Continued )

Purpose Subjects Device Channels Sampling rate/
Recording time/EI

Recording state Refs.

Identity authentication HC: 45 (age = 22.4 � 2.1, User: 15,
Imposter: 30)

g.USBamp amplifier with electrodes 16 2400 Hz, EI < 5 KV Based on rapid visual
presentation of images
of fare and non-fare
users

[20]

Alcoholism HC: 30 (M: 18, F: 12, age = 42.67 � 15.90),
AUD: 30 (M: 16, F: 14, age = 55.4 � 12.87)

Discovery 24E system 19 256 Hz/5 min for each
EO and EC

EO and EC [15]

HC: 15 (age = 42.67 � 15.90), Alcoholics:
18 (age = 46.80 � 9.29), Alcoholic
abusers: 12 (age = 56.70 � 15.33)

(1) Discovery 24E (1) 19 + 1 grd + 2 ref + 2
for event
synchronization

256 Hz and 500 Hz for
(1) and (2) resp./5 min
each for EO and EC/
EI < 10 KV for (1)

EO and EC [50]

(2) Enobio System (2) 19 + 1 External + 2
mastoid ref

Eyes state detection HC: 2 (M: 1, F: 1) Mindwave headset 1 16 min (two 4 min for
each EO and EC)

EO and EC [109]

HC: 20 (M: 8, F: 12, age = 18–30) NeuroScan SynAmps2 30 + 1 electrode A2 + 1
ref (A1) + Vertical EOG
+ Horizontal EOG

sampled DC to 70 Hz
and digitized at 1 KHz/
2 min each for EO and
EC/EI < 5 KV

EOand EC [110]

Driver drowsiness/
fatigue detection

HC: 13 (M: 13, F: 0, age = 22–25) Nihon-Koden EEG 2110 9 + 2 Earlobe channels
(A1, A2) + 2 EOG

256 Hz To make some mental
calculation during the
experiment

[27]

HC: 8 (age = 20–24) Neuroscan device 30 + 2 Ref + Horizontal
and vertical EOG

1000 Hz/60 min Simulated driving
Environment

[111]

Multi-class task
recognition

HC: 5 (M: 3, F: 2, age = 24–30) Emotiv Epoc+ 14 128 Hz Tasks in response to
mark on the screen

[87]

Others HC: 5 with normal vision (age = 21.6
� 5.32)

BioAmp2 wireless recording system Oz-Cz 250 Hz Subjects were asked to
look at the RVS source.

[112]

HC: 28 (M: 25, F: 3 age = 19–37 years and
SD = 4)

Neurosky Mindwave headset 1 EEG channel + eye
tracking data

300 Hz Data collected under
the effect of visual
stimuli, images
selected from IVY LAB
stereoscopic 3D image
database.

[113]

50 evoked potentials from healthy
participants (age: 28–53 years, all males)

Mobile device, LiveAmp (by Brain
vision)

32 channels and 3 axis
sensor for body
movement detection

500 Hz Visual, auditory, and
somatosensory
stimulations

[114]

HC: 10 64 channel g.Gamma cap with g.tech
software

60 256 Hz/5 min EO [67]
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Table 5 – Artifact removal methods.

Application
Artifact removal
technique

Depression Alcoholism Dementia MI/MT Emotion
recognition

Sleep stage Identity
authentication

Epilepsy Drowsiness Eyes open/closed Others

Notch filter (50 Hz
powerline
interference
removed)

[101,12,9,100,13,99] [15] [51] [103,18,104] [108]

� � � � � [112]
Notch filter (60 Hz

powerline
interference
removed)

[48] � � � [108] � � � � � �

Bandpass filter 2–36 Hz [101],
0.5–70 Hz [12,9],
0.5–64 Hz [48],
0.5–46 Hz [49]

0–70 Hz [15] 0.5–60 Hz [98],
0.5–30 Hz [17], 1–
70 Hz [51]

� 0.5–50 Hz [106],
4–45 Hz [47], 0.2–
45 Hz [108]

0.3–45 Hz [45] 0.1–55 Hz [21] 0–50 Hz [68] 1–50 Hz [111] � �

Chebyshev filter Transition
width = 1 Hz,
passband
ripple = 1 dB,
Stopband
ripple = 80 dB
[23]

� � 8th order, 0.01–
200 Hz [103,18]

� � Passband
ripple = 40 Hz,
Stopband
ripple = 49 Hz [20]

� � � �

Elliptic band pass
filter

� � � 0.5–50 Hz [78] � � � 0.5–60 Hz [67] � � 0.5–60 Hz [67]

Bandstop filter � � 49–51 Hz [98] � � � � � � � �
Low pass filter � � 70 or 100 Hz [52] � 40 Hz [107] � � � � � �
High pass filter � � � � 0.5 Hz [107] � � � � � �
Butterworth filter � � 6th order, 1–

49 Hz (bandpass)
[16]

4th order, 1–
70 Hz [103], 4th
order, 0.3–100 Hz
[18], 4th order,
0.3–3 Hz [18], 4th
order, 0.3–3 Hz
[105], 8th order,
0.01–100 Hz, 4th
order, 0.2–70 Hz,
2nd order, 0.4–
0.6 Hz [104]

3th order, 0.5–
15 Hz [108]

20th order, 1–
60 Hz [22] 8th
order, 0.5–35 Hz
[89]

� � 2nd order, 0.5–
60 Hz [94]

5th order, 40 Hz
(low pass) [25],
5th order, 0.5 Hz
(high pass) [26]

5–80 Hz [112],
4th order,
0.01–45 Hz
[113]

Accelerometer
module along 3-
axis

To track and
reject artifacts
due to head
movements [101]

� � � � � � � � � �

Multiple source
modelling
technique

[12,9] [15] � � � � � � � � �

Manual removal by
experts after
visual inspection
or visual
selection of
artifact free data

[100,13,99,49] � [52,17,51] [103,87] [106] � � � [27] [26] �
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Table 5 (Continued )

Application
Artifact removal
technique

Depression Alcoholism Dementia MI/MT Emotion
recognition

Sleep stage Identity
authentication

Epilepsy Drowsiness Eyes open/closed Others

Semi-automatic
detection
method

� Physiological
noise removed
with
contribution of
both user and
machine,
segments with
SHR score > 0.90
selected [50]

� � � � � � � � �

PCA � � � [18] � � � � � � �
ICA [48] � [51] [103,18,105,104] � � � � [111] � �
Automatic removal � � � � [106,47] � � � � � �
Thresholding

technique
� � Segments with

voltage > 150 mV
[17], Segments
with
voltage > 80 mV
[16]

Median absolute
deviation [18,104]

Epochs with peak
value > 70 mV
were rejected
[108]

� � � � � �

Wavelet method � � � � � DWT ('db4') with
adaptive
threshold and
soft threshold
function [22]

� � � Threshold
denoising using
heuristic method
[57]

�

Revised aligned
artifact average

� � � � � � � � � [110] �

Regression based
correction
method

� � � [103,104] � � � � � � �

Adaptive filters � � � � FIR filter with
LMS
optimization
algorithm [117]

� � � Biological noise
and line
interference
handled [94]

� �

Wavelet modified
ICA method

� � � � � � � � � � [113]
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electrocardiogram (ECG) artifacts), etc. All these kinds of
artifacts are generally handled by applying a variety of
artifact removal/reduction methods. These have been
tabulated in Table 5 – the type of artifact removal technique
has been mentioned in the first column, while the rest of
the columns denote the type of application in which the
corresponding method has been applied for filtering. The
symbol (�) denotes that the particular artifact removal
method has not been used in any of the studied research
papers.

(c) Feature scaling
It is very important to scale the features of the dataset in

order to exhibit the symmetrical behaviour. Normalization
is one of the most commonly used feature scaling methods
in the studied papers. The scaling is performed either on
the raw/filtered values or on the extracted features. Table 6
gives the description about the feature scaling methods.

Pre-processing on publicly available datasets
The pre-processing was also performed on some of the

publicly available datasets during their data collection process
before they were publicly released. These involve:

i. In UCI dataset for alcohol, the trials with amplitudes
greater than 73.3 mV, indicating extreme eye and body
movements were discarded.

ii. In Bonn University dataset for epileptic seizure, only those
segments of the collected data were chosen through the
visual inspection that were free from the eye movement
and muscle artifacts. Bandpass filters with frequency
range 0.53-40Hz were also applied.

iii. In Bern Bercelona database for epilepsy, the signals with a
sampling rate of 1024 Hz were downsampled to 512 Hz and
then were filtered with Butterworth bandpass filters of 4th
order with the frequency range of 0.5–150 Hz.

iv. For DEAP dataset for emotion recognition, a preprocessed
form of the original data is also made available online by
the authors in which the downsampling of data to 128Hz
had been performed followed by the removal of EOG
artifacts by blink source separation technique. Then the
band pass filtering with frequency range of 4–45 Hz had
been applied, followed by some segmentation and
reordering steps. The pre-processed dataset can be
acquired from the same web-link as mentioned in Table 3
for the original dataset.
Table 6 – Feature scaling methods.

Normalization method Before/after extracting feat

Max-Min Before 

After 

Z-score (mean = 0, Std Dev = 1) Before 

After 

Unity before 
v. For BCI Competition II Dataset-III, the readings for the
electrode channels were filtered with the bandpass filter of
frequency range 0.5–30 Hz.

vi. For BCI Competition III dataset-IVa, the sampling rate was
1000 Hz which was downsampled to 100 Hz. The signals
were filtered with the band pass filter of frequency range
0.05–200 Hz.

vii. For autism dataset given by King Abdulaziz University,
Saudi Arabia, band pass filters with frequency range 0.1–
60 Hz and notch filter at 60 Hz stop band frequency are
used for preprocessing the data.

6.2. Feature extraction

A number of feature extraction methods are used to perform
time domain, frequency domain, and time-frequency domain
analysis of the signals. Some of them are empirical mode
decomposition (EMD), fast Fourier transform (FFT), wavelet
transform (WT), wavelet packet decomposition (WPD), and so
on. The feature extraction methods have been studied in three
categories- spectral estimation methods, family of transforms,
and time decomposition methods (see Fig. 4). A comparative
analysis of different feature extraction methods has been
briefly summarized in Table 7. Different types of band pass
filters are also used to decompose the signals into various
frequency sub-bands, from which then the features are
extracted for more detailed analysis.

Four categories of features can be reviewed from the
studied applications that are named as – statistical/wavelet,
spectral, non-linear, and functional connectivity based fea-
tures. These have been precisely summarized in Fig. 4. These
features can be directly extracted from the raw or prepro-
cessed signals. But for more deeper analysis, a number of
feature extraction methods (as summarized in Table 7) are
applied to obtain various detailed sub-bands that are used to
extract the different types of features from them. A complete
survey for different category of features using different feature
extraction methods for various applications has been
explained as:
(a) Statistical/wavelet features

Table 8 gives the description about the statistical/
wavelet features – the name of features, reference of the
studies which have worked upon those features, name of
the feature extraction methods (if applied), sub-bands
ures References Purpose

[87] Multi-class task recognition
[24] Emotion recognition

[87] Multi-class task recognition
[62] Seizure/epilepsy
[13] Depression
[9,12] Depression
[15,50] Alcoholism

[87] Multi-class task recognition



Fig. 4 – Types of features extracted with various extraction methods.
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from which the corresponding features have been
extracted after applying the corresponding feature extrac-
tion method (if applied), and the purpose or the application
of the EEG study. In some of the applications, no feature
extraction method has been used, instead the raw or the
preprocessed signals have been directly used for the result
analysis, therefore, no sub-band divisions are performed
for them.

(b) Spectral features
The spectral analysis of the features can be done by

using either parametric (Yuler-walker or Burg's Method) or
non-parametric approach (Welch method with FFT)
[118,55]. These features have been explained in Table 9
giving the information about the- name of the spectral
parameters, any decomposition method if applied, name
of the sub-bands from which the respective spectral
features can be extracted, and the purpose of the study.

(c) Non-linear features
Different categories of non-linear features [125,126]

are available that are important to understand the non-
linear features and complex nature of the EEG signals.
Table 10 gives an explanation about those features as-
category of the non-linear features, name of the features
extracted from the particular category, reference of the
studies which have worked upon those features, name of
the feature extraction methods (if applied), sub-bands
from which the features have been extracted after
applying the corresponding feature extraction method
(if applied), and the purpose or the application of the EEG
study. In some of the applications, no feature extraction
method has been used, instead the raw or the prepro-
cessed signals have been directly used for the result
analysis, therefore, no sub-band divisions are performed
for them.

(d) Functional connectivity based features
By applying the network theory on the collected EEG

data, the functional networks of the brain are constructed
and the connectivity inside them is measured with the
help of various features. The functional connectivity based
metrics that are derived from the EEG data are described in
Table 11, along with the application study and their
references in which they are computed.

6.3. Postprocessing

Post-processing can be done either through the feature
selection methods or the dimensionality reduction methods.

(a) Feature selection
A number of feature selection methods are available in

the studied applications that aim to improve the quality of
the result analysis phase. Table 12 shows the feature
selection methods along with the application and refer-
ence of the study in which they have been used.

(b) Dimensionality Reduction
EEG application studies using the different dimension-

ality reduction methods have been provided in Table 13.

6.4. Result analysis

A variety of machine learning algorithms are used for the
diagnosis of neurological disorders (such as epilepsy/seizure,



Table 7 – Comparison of feature extraction methods.

Feature
extraction
method type

Name Description/Advantages Disadvantages/challenges

Spectral
estimation
methods
[40,118,55]

Non-
parametric
or classical
approach

� Estimation of auto-correlation sequence is done from a
given set of data and then applying the Fourier
transformation to it.

� Concept of windowing creates the spectral
leakage effects.

� Welch method is one of the most popular spectral
estimation method:

� Not good for the spectral estimation of short
EEG segments.

- The sequences are allowed to overlap and the data
windows are applied.

� Suffers from a problem of noise sensitivity.

- Modified periodiograms are generated for each sequence.
- Their average gives an estimation of power spectrum.

Parametric
or non-
classical
approach

� Model based power spectrum estimation method. � Suffers from a problem of selecting an optimal
model order as:

� Overcomes the problem of spectral leakage thus leading
to better frequency resolution

- Higher order induces false peaks and

� Estimation of the parameters of the linear system is
done.

- Lower order leads to the smoothing of spectra.

� AR models, linearly stochastic in nature, are considered
as the most preferred ones for estimating the PSD graphs.

� Highly vulnerable to heavy biases and larger
variability.

� The parameters such as sampling rate, model order, etc.
can be estimated by using two methods:
- Yulk-Walker
- Burg's method
� Best for spectral estimation of shorter data segments.

Family of
transforms
[119,120,118]

Fourier
Transform
(FT)

� Transforms the raw time domain signals into frequency
domain by using exponential function of varying
frequencies as an analysing function for transformation.

� Has zero temporal resolution.

� Captures the different frequency components of the
signals.

� Not good for non-stationary signals i.e. FT is not
a good tool for real time applications where
representation of time varying spectra is
required.

� Appropriate for stationary signals. � Discontinuities in the signals cannot be
represented appropriately.

� Achieves high frequency resolution.
STFT � Windowed version of FT. � Choosing a width of the window is a very

difficult problem as:
� Concept of 'windows' is used, i.e. short time stationary
data segments from the non-stationary ones are chosen
and FT is applied to those segments.

- Shorter time window leads to low frequency
and high temporal resolution.

� Gives both time and frequency representation of the
signals.

- Longer time window leads to high frequency
and low temporal resolution.
� Also the window size is fixed, thus the fixed
resolution throughout the time.

CWT � Alternative method of transformation to STFT. � Parameters, a and b, vary continuously over the
whole time during the calculation of the wavelet
coefficients.

� Time-varying window sizes according to the different
spectral components.

� Thus, involves a lot of redundancy and effort
for analysing and reconstructing the signal, thus
wastage of computational time and resources.

� Time localization of various frequencies can be obtained.
� Good for non-stationary signals.
� Signal is multiplied with the mother wavelet to get the
transformed signal.
� Transformed signal is represented as a function of two
parameters, a and b, called as the ‘‘scale’’ and
‘‘translation’’ respectively.
� Mother wavelet defines the varying finite length window
functions by changing the ‘‘scale’’ and ‘‘translation’’.
�Examples of mother wavelet for CWT are Morlet and
Mexican hat.
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Table 7 (Continued )

Feature
extraction
method type

Name Description/Advantages Disadvantages/challenges

DWT � Easier to implement than CWT. � Choosing the correct choice of ‘‘wavelet’’ is a
tedious task.

� Signal is analysed at different scales w.r.t. time. � It suffers from some other limitations such as
sensitive to translation, shift variance, aliasing,
and lack of directionality [121,66].

� Involves the significant amount of information for
analysing and reconstructing the signal, thus useful for
designing the less intense models in terms of
computational time and resources.

� The extent of frequency resolution achieved by
DWT is considered to be coarse for analysing the
signals in practical scenarios.

� A series of low and high pass filters are used to study the
signal at different ‘‘scales’’.
� ‘‘Level wise’’ decomposition is involved in which the
lists of detailed and approximation coefficients with half
the sampling rate are obtained corresponding to the high
and low frequency components respectively.
� Some of the popular wavelet functions are symlet,
daubechies (db1, db2, db4, db6, and db8), and Haar.
� DWT is the most commonly used method than CWT for
EEG based epilepsy diagnosis application.

DD-DWT [66] � Better time-frequency representation method than
traditional DWT.
� Based on the structure of ‘‘dual-wavelets’’. –

� Input signal is passed through DD-DWT to obtain the
low frequency sub-component and two high frequency
sub-components at each level of decomposition.
� The subtle changes in the EEG signals can be revealed
and localized more accurately through this method.
� Outperformed DWT by having properties of anti-aliasing
and shift invariance.

WPD
[121,122]

� ‘‘Wavelet Packets’’ are generated, given some wavelet
function with orthogonal property.

� Lacks of improved directionality and sensitive
to location w.r.t. time.

� It is an extension to DWT: � Involves complex data structures.
- In WPD, signal is passed through more number of filters
as compared to DWT.
- In DWT, only the approximation coefficients are
decomposed further at each level.
- In WPD, at each level of decomposition, both the detailed
and approximation coefficients are decomposed into high
and low frequency components, thus offering much richer
signal analysis.
- For n levels of decomposition, WPD produces 2n sets of
wavelet coefficients as compared to (n + 1) sets as in DWT.

TQWT
[123,124]

� Efficient in analysing the subtle variations in the
oscillatory signals.

� One should have complete understanding to
finely tune the Q-factor for TQWT.

� Basically involves the 3 parameters – Q (Q-factor), r
(redundancy), and j (number of decomposition levels).

� Number of levels should be chosen carefully
because as the number of levels become too
large, it becomes difficult to interpret the
resulting coefficients.

� A signal with frequency rate fs, is decomposed into low
and high pass sub-bands.
� Low pass filter and low pass scaling parameter (a) are
responsible for generating low pass sub-band with
sampling frequency afs, similarly, high pass filter and high
pass scaling parameter (b) are responsible for generating
high pass sub-band with sampling frequency, bfs.
� Q describes the extent of signal resonance and is tuned
depending upon the oscillatory nature of the signal.
� High value of Q is suitable for high frequency signals and
low for low frequency signals.
� Can be implemented with FFTs in case of discrete time
signals.
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Table 7 (Continued )

Feature
extraction
method type

Name Description/Advantages Disadvantages/challenges

Time domain decomposition EMD [46]
� It is a time-
domain based

decomposition method that helps to effectively analyse
the non-linear and non-periodic signals.

� For EEG signals, where the data is
simultaneously captured using the multiple
channels, EMD is not enough to analyse the
cross-channel interdependence [26].

� The signal is decomposed into a set of intrinsic mode
functions (IMFs) that are used as sub-signals.
� Represents the intrinsic modes present inside the
signals w.r.t. time, thus giving better temporal resolution.

Table 8 – Statistical/wavelet features.

Features Reference Feature Extraction method
(if applied)

Sub-bands Purpose

Mean [45,46] Raw/ Preprocessed signals No sub-band divisions Sleep stage classification
[48] Raw/ Preprocessed signals No sub-band divisions Depression
[14] FAWT D2, D3, D4, D5 and A5 Alcoholism
[63,10] DWT (Db4, Levels = 5) D3, D4, D5, A5 Seizure/epilepsy
[72] Low pass, high pass, band pass

and band stop filters
10 sub-bands – d, u, a, b, low g, full
spectrum excluding 57–63 Hz, 63 Hz to
maximum frequency, 100 Hz to
maximum frequency, 200 Hz to possible
complete spectrum, full spectrum

Seizure/epilepsy

[68] DWT (symlet, levels = 4) d, u, a, b, g Epilepsy
Median [47] Raw/preprocessed signals No sub-band divisions Emotion recognition

[48] Raw/preprocessed signals No sub-band divisions Depression
[14] FAWT D2, D3, D4, D5 and A5 Alcoholism
[45] Raw/preprocessed signals No sub-band divisions Sleep stage classification

Variance [45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[48] Raw/preprocessed signals No sub-band divisions Depression
[95] Band pass filters d, u, a, b, g Sleep stage classification
[72] Low pass, high pass, band pass

and band stop filters
10 sub-bands – d, u, a, b, low g, full
spectrum excluding 57–63 Hz, 63 Hz to
maximum frequency, 100 Hz to
maximum frequency, 200 Hz to possible
complete spectrum, full spectrum

Seizure/epilepsy

Standard deviation [46] FIR bandpass filters d, u, a, b1, b2, k-complex, spindle wave Sleep stage classification
[46] EMD 7 IMFs Sleep stage classification
[47] Raw/preprocessed signals No sub-band divisions Emotion recognition
[48] Raw/preprocessed signals No sub-band divisions Depression
[14] FAWT D2, D3, D4, D5 and A5 Alcoholism
[94] Raw/preprocessed signals No sub-band divisions Drowsiness detection
[25] DWT (db4, levels = 5) d, u, a, b, g Eyes state detection
[61] Multi-basis MODWPT - Seizure/epilepsy
[63,10] DWT (Db4, levels = 5) D3, D4, D5, A5 Epilepsy/seizure
[67] DWT (levels = 6) D3, D4, D5, D6, and A6 Epilepsy and autism
[68] DWT (symlet, levels = 4) d, u, a, b, g Epilepsy
[22] DWT (Db4, levels = 4) d, u, a, b Sleep stage classification

Kurtosis [45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[46] FIR bandpass filters d, u, a, b1, b2, k-complex, spindle wave Sleep stage classification
[46] EMD 7 IMFs Sleep stage classification
[47] Raw/preprocessed signals No sub-band divisions Emotion recognition
[48] Raw/preprocessed signals No sub-band divisions Depression
[14] FAWT D2, D3, D4, D5 and A5 Alcoholism
[22] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[72] Low pass, high pass, band pass

and band stop filters
10 sub-bands – d, u, a, b, low g, full
spectrum excluding 57–63 Hz, 63 Hz to
maximum frequency, 100 Hz to
maximum frequency, 200 Hz to possible
complete spectrum, full spectrum

Seizure/epilepsy
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Table 8 (Continued )

Features Reference Feature Extraction method
(if applied)

Sub-bands Purpose

Maximum [45,46] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[94] Raw/preprocessed signals No sub-band divisions Drowsiness detection
[61] Multi-basis MODWPT - Seizure/epilepsy
[22] DWT (Db4, levels = 4) d, u, a, b Sleep stage classification

Minimum [46] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[94] Raw/preprocessed signals No sub-band divisions Drowsiness detection
[61] Multi-basis MODWPT - Seizure/epilepsy

RMS [45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[48] Raw/preprocessed signals No sub-band divisions Depression
[23] Bandpass filters u, a, b Depression
[25] DWT (db4, levels = 5) d, u, a, b, g Eyes state detection

Skewness [45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[46] FIR bandpass filters d, u, a, b1, b2, k-complex, spindle wave
[14] FAWT D2, D3, D4, D5 and A5 Alcoholism
[22] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[72] Low pass, high pass, band pass

and band stop filters
10 sub-bands – d, u, a, b, low g, full
spectrum excluding 57–63 Hz, 63 Hz to
maximum frequency, 100 Hz to
maximum frequency, 200 Hz to possible
complete spectrum, full spectrum

Seizure/epilepsy

Energy [46] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[45] IIR Butterworth bandpass

filters: 0.5–45 Hz
d, u, a, sigma, b, g

[46] EMD 7 IMFs
[46] FIR bandpass filters d, u, a, b1, b2, k-complex, spindle wave
[117] DWT (Db4, levels = 5) d, u, a, b, g Emotion recognition
[78] DWT (Db4, levels = 3) Level 3 Motor imagery
[57] WPD (Db4, levels = 5) A5, D5, D4, D3 Eyes state detection
[61] Multi-basis MODWPT - Seizure/epilepsy
[22] DWT (Db4, levels = 4) d, u, a, b Sleep stage classification
[17] WPD d, u, a, b Dementia
[72] Low pass, high pass, band pass

and band stop filters
10 sub-bands – d, u, a, b, low g, full
spectrum excluding 57–63 Hz, 63 Hz to
maximum frequency, 100 Hz to
maximum frequency, 200 Hz to possible
complete spectrum, full spectrum

Seizure/epilepsy

Average rectified
value

[45] Raw/preprocessed signals No sub-band divisions Sleep stage classification

Peak-to-peak
amplitude

[45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[45] IIR Butterworth bandpass

filters: 0.5–45 Hz
d, u, a, sigma, b, g

Forward prediction
error

[72] Low pass, high pass, band pass
and band stop filters

10 sub-bands – d, u, a, b, low g, full
spectrum excluding 57–63 Hz, 63 Hz to
maximum frequency, 100 Hz to
maximum frequency, 200 Hz to possible
complete spectrum, full spectrum

Seizure/epilepsy

Zero crossings [45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[48] Raw/preprocessed signals No sub-band divisions Depression
[94] DWT (Db2, levels = 5) Scales – 3 (b), 4 (a), 5 (u) Drowsiness detection

Mean square
amplitude

[117] DWT (Db4, levels = 5) d, u, a, b, g Emotion recognition

Moving slope [117] DWT (Db4, levels = 5) d, u, a, b, g Emotion recognition
Integrated EEG [94] DWT (Db2, levels = 5) Scales- 3 (b), 4 (a), 5 (u) Drowsiness detection
Hjorth Parameters:
(mobility and
complexity)

[45] Raw/preprocessed signals No sub-band divisions Sleep stage classification
[46] FIR bandpass filters d, u, a, b1, b2, k-complex, spindle wave
[46] EMD 7 IMFs
[47] Raw/preprocessed signals No sub-band divisions Emotion recognition
[22] Raw/preprocessed signals No sub-band divisions Sleep stage classification

Energy ratios [45] IIR Butterworth bandpass
Filters: 0.5-45 Hz

d, u, a, sigma, b, g Sleep stage classification
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Table 8 (Continued )

Features Reference Feature Extraction method
(if applied)

Sub-bands Purpose

Cumulative max
and min, Smallest
window elements,
moving median,
max to min
difference, Root
sum of squares
peak and other
related

[48] Raw/ Preprocessed signals No sub-band divisions Depression

Auto-regressive
coefficients

order = 6
[21]

Raw/preprocessed signals No sub-band divisions Identity authentication

AAR coefficients
with RLS

order = 6
or 12 [77]

Raw/preprocessed signals No sub-band divisions Motor imagery

order = 6
[78]

Raw/ Preprocessed signals No sub-band divisions

Wavelet coefficients [80] DWT (Db8) d, u, a, b, g Emotion recognition
[81] DWT (Db8) d, u, a, b, g Emotion recognition
[83] WPD - Motor imagery
[57] WPD A5, D5, D4, D3 Eyes state detection
[64] DWT (db1, db2, db4, db6, Haar) - Seizure/epilepsy
[74] Wavelet filter bank (scales = 6,

db4)
Upper 5 scales- d, u, a, b, g Seizure/epilepsy

Energy (delta/alpha) [22] DWT (Db4, levels = 4) d, u, a, b Sleep stage classification
Wavelet entropy [78] DWT (Db4, levels = 3) Level 3 Motor imagery
Maximum and
minimal singular
value

[11] GST and SVD - Seizure/epilepsy

Table 9 – Spectral features.

Features Feature extraction method Sub-bands Purpose

Mean frequency Welch method [45] MEAN frequency from the whole power
spectrum for 1 s epoch

Sleep stage classification

Band power Welch method + IIR Butterworth
bandpass filters: 0.5-45 Hz [45]

d, u, a, sigma, b, g Sleep stage classification

[47] u, low (a), a, b, g Emotion recognition
FFT [24] d, u, a, b, g Emotion recognition
Welch method + Butterworth bandpass
[99]

d, u, a, b Depression

[48] d, u, a, low (b), b, high (b), g Depression
[9] Welch method d, u, a, b Depression
FFT [50] d, u, a, b, high (b), g, high (g) Alcoholism
Elliptic bandpass [78] d, u, a, b, g, Motor imagery
DWT (db4, 5 levels) [63,10] D3, D4, D5, A5 Seizure/epilepsy
DWT (levels = 6) [67] D3, D4, D5, D6, and A6 Epilepsy and autism

Normalized band power FFT [24] d, u, a, b, g, Emotion recognition
SASI, APV, RGP [49] Modified u, a, modified b, g, Depression
Peak power and their
corresponding peak
frequencies

FFT (Welch method), Peak values from the whole PSD graph Epilepsy, alcoholism

Yuler-walker, Burg's Method [55]
Relative power FFT [50] d, u, a, b, high (b), g, high (g) Alcoholism

[51] d, u, a, b-1, b-2, g Dementia
Median frequency [51] Median frequency of the whole PSD

graph
Dementia

[48] Median frequency of the whole PSD
graph

Depression

Individual alpha
frequency

[51] Only a band Dementia
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Table 9 (Continued )

Features Feature extraction method Sub-bands Purpose

Lowest, mean and
highest relative power
and peak frequencies
from all sub bands and
in range (4–13 Hz)
respectively, theta/
alpha ratio

FFT [52] d, u, a1, a2, b Dementia

Central frequency, Q1F,
Q3F, ratio H/L, RH/L,
SSD, IR, MaxF, AC,
kurtosis coefficient

Burg's method with order = 20 [94] d, u, a, b, g Drowsiness detection

Other PSD parameters [21] From the PSD graph, but sub-bands not
mentioned

Identity authentication

Max to min power ratio DWT (db4, levels = 5) [117] d, u, a, b, g Emotion state recognition
Power ratios, product of
powers

IIR Butterworth bandpass filters: 0.5–
45 Hz [45]

d, u, a, sigma, b, g, Sleep stage classification

Valence, arousal [48] From a and b sub-bands Depression
EEG alpha
interhemispheric
asymmetry

FFT (Welch method) [9] From a band Depression

DE, DASM, RASM [24] d, u, a, b, g Emotion recognition
Power percentage,
gravity frequency,
frequency variability

FFT [27] d, u, a, b, g Drowsiness detection

Table 10 – Non-linear features.

Category Features Reference Feature extraction
method (if applied)

Sub-bands Purpose

Entropy based
features

Spectral entropy [45] Welch method From the whole power
spectrum

Sleep stage classification

[51] Not mentioned From the whole power
spectrum

Dementia

Renyi Entropy [45] Welch method From the whole power
spectrum

Sleep stage classification

[27] DWT (db4) A5, D5, D4, D3, D2 Drowsiness detection
Kraskov entropy [46] FIR band pass filter d, u, a, b1, b2, k-

complex, spindle wave
Sleep stage classification

[46] EMD 7 IMFs Sleep stage classification
Shannon entropy [106] Raw/preprocessed

signals
No sub-band divisions Emotion recognition

[67] DWT (levels = 6) D3, D4, D5, D6, and A6 Epilepsy and autism
Centered
correntropy

[54] TQWT Last detailed subband Alcoholism

Sample entropy [51] Raw/preprocessed
signals

No sub-band divisions Dementia

[27] DWT (db4) A5, D5, D4, D3, D2 Drowsiness detection
[22] Raw/preprocessed

signals
No sub-band divisions Sleep stage classification

[22] DWT (db4, levels = 4) d, u, a, b Sleep stage classification
MSE [88] Raw/preprocessed

signals
No sub-band divisions Eye state recognition

[89] Sleep stage classification
Fuzzy entropy [51] Dementia

[66] DD-DWT (levels = 5) 15 sub-bands – c1, c2,
c3, c4, c5, d11, d21, d31,
d41, d51, d12, d22, d32,
d42, and d52

Epilepsy/seizure

[22] Raw/preprocessed
signals

No sub-band divisions Sleep stage classification

Permutation
entropy

[98] Dementia

[22] Sleep stage classification
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Table 10 (Continued )

Category Features Reference Feature extraction
method (if applied)

Sub-bands Purpose

MPE [88] Eye state recognition
Tsallis entropy [22] Sleep stage classification
Singular value
entropy 1
Singular value
entropy 2

[11] GST and SVD Seizure/epilepsy

Approximate
entropy

[27] DWT (db4) A5, D5, D4, D3, D2 Drowsiness detection

Dispersion entropy [95] Band-pass filter d, u, a, b, g Sleep stage classification
Fractral
dimension

KFD [46] FIR band pass filter d, u, a, b1, b2, k-
complex, spindle wave

Sleep stage classification

[46] EMD 7 IMFs Sleep stage classification
[106] Raw/preprocessed

signals
No sub-band divisions Emotion recognition

PFD [46] FIR band pass filter d, u, a, b1, b2, k-
complex, spindle wave

Sleep stage classification

[46] EMD 7 IMFs Sleep stage classification
HFD [46] FIR band pass filter d, u, a, b1, b2, k-

complex, spindle wave
Sleep stage classification

[46] EMD 7 IMFs Sleep stage classification
[106] Raw/preprocessed

signals
No sub-band divisions Emotion recognition

[99] Depression
[49] Depression

FD [47] Emotion recognition
[22] Sleep stage classification

Fractral analysis DFA [46] FIR band pass filter d, u, a, b1, b2, k-
complex, spindle wave

Sleep stage classification

[46] EMD 7 IMFs Sleep stage classification
[99] Raw/preprocessed

signals
No sub-band divisions Depression

[49] Depression
Other
complexity
measures

LZC [106] Emotion recognition

[49] Depression
[51] Dementia
[22] Sleep stage classification

KC [106] Emotion recognition
CD [99] Depression
Large Lyapunov
exponents

[99] Depression

[22] Sleep stage classification
Hurst exponent [22] Sleep stage classification

[66] DD-DWT (levels = 5) 15 sub-bands – c1, c2,
c3, c4, c5, d11, d21, d31,
d41, d51, d12, d22, d32,
d42, and d52

Epilepsy/seizure

CTM [51] Raw/preprocessed
signals

No sub-band divisions Dementia

AMI [51] Dementia
Area parameters
from RPS plots of
rhythms using
CTM

[70] EWT d, u, a, b, g Seizure/epilepsy

LL2N [100] Six length BDL
TCOWFB

7 wavelet sub bands Depression

Bispectrum
features using HOS

[16] Raw/preprocessed
signals

No sub-band divisions Dementia

RQA [27] DWT (db4) A5, D5, D4, D3, D2 Drowsiness detection
LLE [67] DWT (levels = 6) D3, D4, D5, D6, and A6

and db4
Epilepsy and autism
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Table 11 – Functional connectivity based features.

Features EEG application References

Topological features based on PSI such as Eglobal, Elocal, C, Bnodal, and Bedge Dementia [17]
RWECN Fatigue classification [111]
SL Alcoholism [15]

Depression or stress [12,102]
Phase lag index Dementia [52]
Cross-correlation Epilepsy and autism [67]

Table 12 – Feature selection methods.

Technique EEG application References

mRMR Emotion recognition [47]
Sleep stage classification [45]

Genetic algorithm Emotion recognition [47]
Identity authentication [20]
Depression [99]

Fast correlation-based filter solution Dementia [51]
Sleep stage classification [22]

Sequential forward floating selection Identity authentication [21]
Sleep stage classification [22]

Wrapper subset evaluation Emotion recognition [24]
Rank based Selection using ROC Depression [12,9]

Alcoholism [15]
Student t-test Depression [100]

Alcoholism [50]
Parkinson [16]
Sleep stage classification [95]

Correlation based method Depression [48]
Wrapper method Depression [48]
Kruskal Wallis test Epilepsy/seizure [70]

Sleep stage classification [46]
FDM, Kullback–Leiber, Bhattacharya distance, Motor [77]
Gini Index, DM imagery
LDA Drowsiness detection [94]
ANOVA test Eyes state detection [109]

Epilepsy [66]
CfscSubset Eval Evaluator (weka toolkit) Eyes state detection [57]
Fisher Score Sleep stage classification [22]
Sequential forward selection Sleep stage classification [22]
RF Sleep stage classification [46]

Table 13 – Dimensionality reduction methods.

Dimensionality reduction method Application References

PCA Depression [99,48]
Alcoholism [54,50]
Epilepsy/seizure [61,63,64,68]
Sleep stage classification [45]

ICA Epilepsy/seizure [61,63]
KPCA, ISOMAP, LLE, and LE Epilepsy/seizure [61]
LDA Epilepsy/seizure [63]
Autoencoder Multi-class task recognition [87]
Generalized Gaussian distribution Epilepsy/seizure [74]
Compensation distance evaluation technique Stress [102]
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Table 14 – Classification algorithms.

Classifiers Applications References

SVM [12,48,9,100,101,47,117,14,15,50,77,83]
[25,26,16,17,63,64,66,68,87,27,21,46]

LR [12,9,99,49,101,100,23,15,26]
NB [12,9,14,15,83,16,17,46]
LDA [99,50,17,74,87,21]
KNN [99,48,100,23,24,83,17,16]
GDA [48]
LS-SVM [100,14,54,70,61]
LD [100]
Complex tree [100]
Bagging [100,78,46,21]
RF [24,83,57,11,68,87,22,46,101]
CNN [13,84,62,87,97]
QDA [23]
MLP [80,24,59,10,50]
DNN [81,95]
LMT [50]
Ensemble classifier [77,78,22]
DT [83,16,46,87]
ANN [83,26,94]
Boosting [78,22,87,46]
DBN [59]
Dropout NN [59]
Fuzzy KNN [16]
PNN [16]
Weighted/unweighted N-TSK [17]
ME [10]
Proposed USVM and UTSVM, USVM, TWSVM, UTSVM [64]
MK-LSVM [61]
Optimized SVM (GA-SVM) [66]
GRNN [72]
GBM [68]
RNN [87]
FLDA [111]
ELM [27]
GBDT [22]
LSTM RNN [45]
Hierarchical classification based on probabilistic output SVM and proportion
based clustering

[89]

HDCA, optimized HDCA [20]
GSLT-CNN, CV-CNN [21]

Table 15 – Color coding scheme for EEG applications.

Color Application

Depression
Alcoholism
Dementia
MI
Eye state recognition
Identity authentication
Emotion recognition
Epilepsy
Multi-class task recognition
Drowsiness detection
Sleep stage classification
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MDD, AUD, etc.) or monitoring of other applications (such as
emotion recognition, sleep stage classification, etc.) with the
help of EEG signals. The machine learning classifiers such as
supervised, unsupervised, deep learning neural architectures,
and ensemble learning models are used for the classification
purposes in various EEG research studies. Some important
findings have also been concluded in the following sub-
heading that have applied the statistical tests on the extracted
features or other parameters for result analysis. The result
analysis phase can be explained through classification models
and statistical analysis as below:

(a) Classification models
The survey for classification algorithms for various EEG

applications has been done into two parts:
(a) Table 14 gives an idea to the readers about the extent

the particular classification algorithm has been explored for
various applications. Ist column gives the name of the
classification algorithm, second column signifies the appli-
cations which have worked upon these algorithms, and the
third gives the reference of the application study. The color
coding for the Table 14 has been explained in Table 15 where
each color signifies the type of an EEG application.

(b) Table 16 summarizes the details of the best
performing algorithms in the corresponding application



Table 16 – Classification algorithms.

Classifiers References Application Class labels Division ACC SEN SPEC F-score Others

SVM [12] Depression 2 (Normal and
MDD)

10-fold CV 98 99.9 95 0.97 –

[48] Depression 2 (High stress and
low stress)

10-fold CV 80.32 – – – –

[9] Depression 2 (Normal and
MDD)

10-fold CV 98.4 96.66 100 – –

[47] Emotion Recognition 2, 3, and 5 classes
each for Valence
(V) and Arousal (A)

8-fold 2 Classes – 73.06
(A), 73.14 (V), 3
classes – 60.7 (A),
62.33 (V), 5 classes
– 46.69 (A) 45.32 (V)

– – – –

[15] Alcoholism 2 (AUD and
normal)

10-fold CV 98 99.9 95 0.97 –

[77] Motor Imagery 2 (Left and right
hand imagery
movements)

Holdout and 5-
times 10-fold CV

80 (Holdout), 78.57
(10-fold)

– – – –

[25] Eye state detection 2 (EO and EC) 2-fold CV 86.08 – – – –

[16] Dementia 2 (Parkinson and
not)

10-fold CV 96.62 100 99.25 0.98 99.38 (Precision)

[63] Epilepsy 2 (Normal and
epileptic)

800 samples for
training and 800
for testing

100 100 100 – –

LR [99] Depression 2 (Normal and
depressed)

LOOCV 90 – – – –

[49] Depression 2 (Normal and
depressed)

LOOCV 92 – – – –

[101] Depression 2 (Normal and
MDD)

0.8–0.2 72.41 86.21 – 0.7576 67.57 (Precision)

[23] Depression 2 (Congruent and
incongruent
conditions)

LOOCV 81.1 – – – –

[26] Eye state detection 2 (EO and EC) 5-fold CV 88.2 – – 0.882 Detection of eye
states takes 2 s

Weighted N-TSK [17] Dementia 2 (AD and control) Data for 46
subjects used as
training and 16 as
testing

97.30 95.48 98.32 – –

LS-SVM [100] Depression 2 (Normal and
depressed)

10-fold CV 99.58 98.66 99.38 – 1 (AUC), 0.991 (MCC)

[14] Alcoholism 2 (Alcoholic and
non-alcoholic)

10-fold CV 99.17 99.17 99.17 99.16 99.44 (Precision),
0.9833 (MCC), 0.9933
(AUC)

[54] Alcoholism 2 (Alcoholic and
normal)

10-fold CV 97.02 96.53 97.5 – 0.9494 (MCC)

[70] Epilepsy 2 (Focal and non-
focal)

10-fold CV 90 88 92 – –
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Table 16 (Continued )

Classifiers References Application Class labels Division ACC SEN SPEC F-score Others

[61] Epilepsy 2 (interictal and
ictal)

10-fold CV 99.67 – – – –

CNN [13] Depression 2 (Normal and
depressed)

0.9–0.10/10-fold 95.49 94.99 96 – 1 (AUC), 0.991 (MCC)

[84] Motor imagery 2 (Right hand and
right foot)

0.80–0.20 99.35 98.80 100 0.994 0.9869 (Kappa
coefficient)

[62] Epilepsy 3 (Normal, pre-
ictal and seizure)

0.9 (0.70–0.30)–0.10
with 10-fold CV

88.67 95 90 – –

[97] Sleep stage
classification

5 (Wake, N1, N2,
N3 and REM)

0.5–0.2–0.3 87 – – 0.87 (F1-micro),
0.78 (F1-macro)

0.81 (Kappa)

MLP [80] Emotion Recognition 2 (Happy and sad) Out of 32 subjects,
data for 30 used as
training and 2 as
testing

58.5 – – – –

LMT [50] Alcoholism 2 or 3(Alcoholics,
alcohol abusers,
and controls)

10-fold 96 97 93 0.97 0.97 (AUC)

KNN [24] Emotion recognition 2 (Boredom and
non-boredom)

10-fold 86.73 – – – 0.92 (AUC)

[83] Motor imagery 2 (Right hand and
right foot)

10-fold 94.57 – – – –

DNN [81] Emotion recognition Low/high each for
Valence (V) and
Arousal (A)

Out of 32 subjects,
data for 30 used as
training and 2 as
testing

62.50 (V), 64.25 (A) – – – –

[95] Sleep stage
classification

4 and 2 from
stages (W, S1, S2,
S3, S4 and REM)

10-fold sleep vs wake:
85.51, light sleep
vs deep sleep:
94.03, NREM vs
REM: 95.71

– – – –

[26] Eye state detection 2 (EO and EC) 5-fold 88.2 – – 0.882 Detection of eyes
state takes 2 s

[94] Drowsiness detection 2 (Alert and
drowsy)

0.70–0.30 85.5 – – – –

RF [57] Eye state detection 2 (EO and EC) 0.66-0.34 99.8 – – – Classification
speed = 639.5 samples/s

[11] Epilepsy 2 and 3 (Normal,
interictal, and
ictal)

10-fold 99.63 (seizure vs
non-seizure)

– – – –

[46] Sleep stage
classification

5 (N1, N2, N3, REM,
W)

2-fold 89.4 – – – –

Dropout NN [59] Eye state detection 2 (EO and EC) Holdout (0.8–0.1–
0.1), 10-fold CV,
LOOCV

97.5 (Holdout) – – – Classification
speed = 1.9 s

ME [10] Epilepsy 2 (Epileptic and
normal)

1000 samples for
training and 600
for testing

94.5 95 94 – –
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Table 16 (Continued )

Classifiers References Application Class labels Division ACC SEN SPEC F-score Others

Proposed UTSVM [64] Epilepsy 2 (Healthy and
seizure)

0.5–0.5 99 – – – Training
time = 0.01756 s

MKLSVM [61] Epilepsy 2 (Interictal and
ictal)

10-fold CV 99.83 – – – –

GA-SVM [66] Epilepsy 2 or 3 (healthy,
inter-ictal. ictal),
(inter-ictal and
ictal), (seizure and
non-seizure)

10-fold CV – 100 100 – 100 (PPV)

GRNN [72] Epilepsy 2 (pre-ictal and
inter-ictal)

Training and
testing:
approximately half
(labelled training
data, unlabelled
testing)

– – – – Prediction
rate = 91.6%

GBM [68] Epilepsy 3 (ictal,
intermittent, and
healthy)

10-fold CV 96.5 – – – 0.9695 (AUC)

LDA [74] Epilepsy 2 (seizure and non-
seizure)

LOOCV – 98 88 – Average detection
latency of 4 s thus
very fast method

XGBoost [87] Multi-class task
recognition

5 tasks (public
dataset)

532,000 samples
for training and
28,000 for testing

0.794 0.781 – 0.7883 0.9456 (AUC)

[87] 6 tasks (local
dataset)

155,520 samples
for training set and
17,280 samples for
testing

0.7485 – – – –

FLDA [111] Drowsiness detection 2 (Alert and
fatigue)

10-fold – – – – Proposed method
shows improved
performance than
traditional
approach

ELM [27] Drowsiness detection 2 (Alert and
drowsy)

LOOCV 95.6 96.8 94 – Accuracy = 96.9
(EEG + EOG)

Ensemble classifier [22] Sleep stage
classification

6 (awake, NREM1,
NREM2, NREM3,
NREM4, REM)

0.70–0.30 with 5-
fold CV

96.67 – – – 0.96 (Kappa
coefficient)

[77] Motor Imagery 2 (Left and right
hand imagery
movements)

Holdout and 5-
times 10-fold CV

80 (Holdout), 78.57
(10-fold)

– – – –

[78] Motor Imagery 2 (Left and right
hand movement)

0.5–0.5 (holdout
technique)

85.71(Adaboost
(Mix boost
ensemble))

– – – –

LSTM RNN [45] Sleep stage
classification

5, 4 and 2 (N1, N2,
N3, REM, W)

0.80–0.10–0.10 with
10-fold CV

86.74 (five classes) – – – –
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studies as- name of the algorithm, reference of the
study, type of an application, class labels, division of the
dataset into training, validation (in some cases) and testing
datasets or name of the Cross Validation (CV) technique if
used for computing the performance parameters, and
the rest of the columns give performance of the classifiers
in the form of various parameters such as accuracy (ACC)
in (%), sensitivity (SEN) in (%), specificity (SPEC) in (%),
f-score, and other parameters (such as precision (%), MCC,
etc.).

(b) Statistical analysis
There are some application studies that have used

different statistical tests for EEG signal analysis. Table 17
describes the name of the statistical test, features or
parameters on which the test is applied, results, and
purpose or the application for which the tests are used
along with their references.

7. Other research studies

There are some research studies that have been separately
summarized in Table 18 with their important findings. Some of
them have worked upon the ERP measures or the evoked
potentials [107,112,114] for developing various applications
based on EEG signals, while we came across two studies that
are based upon classifying two neurological disorders simul-
taneously – (epilepsy and autism) [67] and (epilepsy and
alcoholism) [55], another study is using a combination of ECG
and EEG signals to classify the sleep stages [95], then stress
analysis is done using EEG, salivary cortisol level test, and VAT
[102], one study is proposing the circuit to make reliable ERP
measurements using low cost Emotiv Epoc+ headset [108],
then the visual comfort level for stereoscopic images are
predicted using a combination of EEG signals and eye tracking
data [113], images are used instead of signals for classifying the
MI tasks [84], and the MDD patients are classified from normal
subjects by using a combination of EEG signals, GSR, and eye
tracking data in another study [101]. For the attribute 'Dataset'
in Table 18, the description for the data collection has already
been summarized in Section 5.

8. Research gaps and future directions

Unlike the other functional neuroimaging techniques, that are
only useful in diagnosing various neurological disorders, EEG
signals are successful in monitoring the other applications too,
such as identity authentication, emotion state recognition and
designing the BCI systems. The subtle variations that come in
the long EEG recordings are very difficult to analyse, time
consuming, and their analysis depend upon the human
expertise. The signal processing and machine learning
algorithms based on computer aided technologies have been
proven as the beneficial tools for the research. These extract
the most important ncharacteristics from the EEG signals and
help to design the automated systems that can reduce the
human burden and increase the accuracy of the models. In
healthcare, the brain signals of the patients can be fed to the



Table 17 – Statistical analysis.

Method Feature Result Purpose

t-test Alpha band power for both the
hemispheres for depressed and
normal

Significant difference of p < 0.05 for alpha band power is found
between two groups (depressed and normal) in:

Depression
[99]

� Five electrodes (C3, P3, O1, F7, T3) of left hemisphere.
� One electrode (O2) of right hemisphere.
� Higher values for depressed than normal.

Statistical test Power, Alpha interhemispheric
for depressed and normal

� Less power in alpha and theta bands in all the regions (central,
occipital, frontal, parietal and temporal) for depressed than normal.

Depression
[9]

� For MDD, it is more in right region than left for frontal region and
for rest of regions it is vice-versa. For normal, both the cases are
reverse.
� Significant difference of p < 0.01 for both parameters is found
between two groups (depressed and normal).

Mann–Whitney
test

SASI, APV, RGP, HFD, DFA, LZC
for normal and depressed

� Higher values for parameters for depressed than normal. Depression
[49]

� Significant difference ( p < 0.05) found for APV, RGP and HFD
between two groups (depressed and normal).

ANOVA, ROC KFD, HFD, LZC for MDD and
normal

� Higher values of complexity measures are found for MDD than
normal – significant difference of p < 0.01, p < 0.05 and p = 0.05 are
found for features of KFD, HFD and LZC respectively in frontal and
parietal locations.

Emotional
state
recognition
[106]

� When subjected to noise, MDD show more complexity than normal.
� For MDD, more complexity seen when subjected to noise than
music.
� For normal, significant difference found in frontal ( p < 0.05) and
parietal ( p = 0.05) regions for the parameters when subjected to
music than restline state.
� For MDD, significant difference found in frontal region ( p < 0.05) for
KFD and LZC when subjected to music than restline state.

t-test, chi-
square

Power, SDS score and other
parameters for normal and
depressed

� No significant difference between age, gender and marital status. Depression
[101]

� Significant difference found for SDS score ( p < 0.01) between two
groups.
� Significant difference of ( p < 0.05) found in EEG power of theta,
alpha, beta and gamma bands, lower values are observed for MDD.

Wilcoxon signed
ranked test,
Friedman test,
Bonferroni-
corrected

Stress is induced under
external stimuli for normal
subjects. Reaction times were
observed for congruent and
incongruent condition for
subject and also performance
of classifiers is also observed
under the two conditions

Significant differences ( p < 0.01) found in: Depression
[23]

� Reaction time of subject for congruent and incongruent condition.
� LR and QDA work superior to 3-NN for fused features.
Significant differences ( p < 0.05) found in:
� Classifier for four electrodes (F3, F4, F7 and O2).

t-test AP and RP for both EO and EC � For AUD and controls, significant difference of p < 0.01 for AP and
RP for theta band in both EO and EC.
� For alcoholics and alcoholic abusers, significant difference of
p < 0.01 for AP and RP for delta band in both EO and EC.

Alcoholism
[50]

� Overall, RP shows more significant results than AP.
One-way
ANOVA

MSE � Eight values for MSE were chosen according to their p-values
( p < 0.001 and p < 0.5) for each classification level of hierarchy.
� MSE curves for two channels (Fpz-Cz and Pz-Oz) are same for
healthy people and people with mild difficulty in sleeping.

Sleep stage
classification
[89]

Bonferroni test Cortisol level � Its value increases immediately after the stress test and after the
recovery of stress with a significant difference of p < 0.001 as
compared to the pre-stress condition

Stress [102]
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Table 17 (Continued )

Method Feature Result Purpose

ANOVA test,
ROC

Peak powers, their
corresponding frequencies and
ratio of peak power and
frequency derived from PSD for
normal, epileptic and alcoholic
using Welch, Yulker walker
and Burg's method

� Very low p-values for the features for burg's method. Alcoholism
and epilepsy
[55]

� For ROC, burg's method gives the most distincting results.
t-test EPN � Significant difference of p < 0.001 is observed values of EPN for

occipital electrodes O1 and O2 under the emotion effects
Emotion
state
recognition
[108]

Mann-Whitney
test, ROC

MPE and MSE for EO and EC � Higher significant results found for MPE ( p < 0.05) than MSE. Higher
significant difference for MPE found at electrodes:

Eye state
recognition
[88]

F5 0.00001
Fp1 0.000028
F2 0.00001
F4 0.00013
Fp2 0.00017
P4 0.0163
P3 0.0179
O1 0.023
� For ROC, maximum value of AUC at F5 (AUC = 0.90750) and we get p
value for F5 = 0.00001

Wilcoxon rank-
sum test

PSI � Significant difference of p < 0.01 between AD and control for PSI
value.

Dementia
[17]

� Lesser PSI value for Alzheimer patients depicts the weaker
functional connections than healthy subjects.
� Significant difference of p < 0.01 between AD and control for Eglobal,
Elocal and C, the values of these parameters are lower for AD patients
than normal subjects.
� Significant difference of p < 0.01 between AD and control for Bnodal

and Bedge, the values of these parameters are higher for AD patients
than normal subjects.

t-test Wavelet entropy and RWECN For states alert and fatigue, significant difference of p < 0.01 for
wavelet entropy and RWECN.

Driver
drowsiness
[111]
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models that give automated decisions about their disorder,
thus reducing the time of the patients as well as the doctors in
hospitals. Even the prediction models can be developed using
EEG signals that keep on monitoring the mental state of the
person and depending upon the change in behaviour, a
warning system can be generated that help the patients to
reduce the risk of the disease. Suppose in one case, if the
seizure attacks of a person can be predicted in advance, a lot of
accidents or injuries can be prevented and in another case, the
progression of the disease can also be measured like MCI can
lead to the Alzeihmer if not taken seriously or normal stress
can lead to MDD if not diagnosed in advance. In other
applications too, the different functional states of the brain
can be analysed by the automated systems based on EEG
signals and help to design the applications such as authenti-
cating the identity of the person, designing the warning
systems to alert the drivers about their drowsy state and so on.
The BCI systems based on EEG signals can help the disabled
people a lot to perform their daily tasks such as controlling
their wheel chairs, closing or opening the doors of the lifts with
their motor imaginary based brain signals, controlling the
television screen in their houses or work environments to
perform different tasks and so on. The various research gaps
and the future directions have also been suggested by the
authors in their studies based on different applications of EEG
signals. These have been summarized in Table 19. The most
common ones are:

(a) The unavailability of larger datasets for most of the
applications that restricts the validation of the models
for practical use and restricts their feasibility for clinical
use.

(b) The need of the hour is to develop the mobile, portable and
cheap models that are computationally less intensive and
requires less storage space.

(c) The model should be simple and consists of least number
of EEG channels.

(d) The real time data is full of artifacts, so very efficient
filtering techniques need to be proposed that help to
reduce the noise and increase the performance of the
models.

(e) A variety of feature extraction techniques and machine
learning classifiers can be explored for different datasets.



Table 18 – Other research studies.

Purpose Dataset Methodology Findings

Emotion recognition
[107]

Own dataset Single trial ERP and latency
features + SVM
(polynomial)

� The ERP attributes have been directly obtained from the
filtered EEG signals at different latencies.

� 4 class emotion classification has been performed with good
accuracies under the subject independent as well as subject
dependent scenario.
� The proposed methodology in this study motivates to
develop the real time applications based on emotion
classification with reduced processing time.

brain computer
interface [112]

Own dataset SSVEP responses � An asynchronous SSVEP based BCI system for spelling
interface for high frequency RVS has been developed using a
single EEG channel.
� LASSO algorithm has been adopted as the frequency
detection method to evaluate the SSVEP responses in the
range 6-60 Hz.
� The frequency set of 35-40 Hz is best suited for BCI with best
accuracy of 99.2%, ITR of 67.1 bit/min and maximal user
comfort level of 80%.

Visual, auditory, and
somatosensory
stimulations [114]

Own dataset VEP, AEP, and SEP
measured under different
stimulating conditions.

� The best positions on the scalp have been investigated for
the measurement of the evoked potentials so that the
wearables with few electrodes can be used for real time EEG
applications.
� The activities occurring due to the visual, auditory, and
somatosensory stimulations are detected in the Lobus
Occipitalis and Lobus temporalis.
� The combination of VEP, AEP, and SEP can be detected at Oz,
O1, O2, TP9, and TP10.
� It is also investigated that segmentation frequency should
match the stimulation frequency with an accuracy of at least
99.92% for VEP detection and 99.95% for AEP and SEP
detection.

Epilepsy and autism
[67]

Own + public
dataset

DWT, Shannon entropy
and KNN

� Based on two class scenario: Epileptic vs normal for single
channel and autistic vs normal for single and multi-channel,
as well as three class scenario: epileptic vs normal vs autistic
for single and multi-channel.
� Thus it is able to classify the data for two neurological
disorders (autism and epilepsy) at the same time.
� It gives an overall accuracy of 94.6% for the three class
classification scenario.

Alcoholism and
epilepsy [55]

Public dataset PSD using Welch method
and AR model

� Analysis has been done to distinguish the normal, epileptic
and alcoholic subjects using ROC method.
� Burg's method gives the most distinguishing features.

Sleep stage
classification [95]

Public dataset ECG (IMFs) + EEG (sub-
bands): (RQA, dispersion
entropy and variance)
+ Deep neural architecture

� The proposed method is able to get the highest classification
accuracies for different combinations of classes using the
features from both the RR-time series (ECG) as well as EEG
data.
� Uses only the single channel data recordings of both EEG
and ECG data.
� Simulation time for evaluating the features from RR time
series and EEG signals take 0.03 and 4.89 s respectively,
classification using both the features takes 0.275 s.

Stress [102] Own dataset SL + CDET + SVM (RBF) � Salivary cortisol levels and VAT are also measured along
with EEG to check the stress level changes during the three
different scenarios.
� The effect of stress vanishes after 20 min of the test.
� Accuracies for EO and EC for alpha waves are 74.32% and
91.21% respectively, i.e., alpha waves are more sensitive to
anxiety in EC state.
� Accuracies for EO and EC for beta waves are 92.31% and
93.62% respectively.
� Good classification accuracies for alpha and beta
bandwidths are observed for monitoring the stress levels.
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Table 18 (Continued )

Purpose Dataset Methodology Findings

Emotion state
recognition [108]

Own dataset ERP and stimuli display
timestamps, EPN

� The marking circuit for determining the stimuli display time
stamps has been proposed for attaining the reliable ERP
measurements in case of low cost Emotic Epoc+ headset.
� Differences can be observed for EPN components under the
effect of different facial expressions using the proposed
modifications.
� The proposed scheme can be a very good solution to carry
out the research using the low cost EEG devices.

Visual comfort level
of images [113]

Own dataset Multi-taper method + Eye
tracking features and EEG
activity from frontal lobe

� This aims at finding the set of significant features for
predicting the visual comfort level for stereoscopic images.

� The best results are found for 2-s and 5-s pre-DPI windows
for the selected feature set.
� Increased activity was observed for beta, theta-alpha ratio,
alpha-high beta ratio in case of visually uncomfortable
stereoscopic perception.

Motor imagery [84] Public dataset Signals transformed to
images using STFT and
CWT + AlexNet

� The EEG signals are not directly used instead the
transformed images are fed to the deep CNN to classify the
motor imagery tasks.
� CWT performs better than the STFT transform.
� Overall accuracy of 99.35% is achieved through the proposed
approach.

Depression [101] Own dataset EEG, GSR, Eye tracking
data + LR

� Using only EEG signals gives an f1 score of 75.76% for
classification of MDD and normal.
� The combination of EEG, eye tracking and GSR data achieves
an improved performance with f1 score of 80.70%.

Table 19 – Research gaps and future directions.

Purpose Research gaps and future directions

Depression � Hospitalized MDD patients can be explored for more realistic results [101,12,9].
� The depression study is still under-diagnosed among the older subjects, so there is a scope to carry further study on
the depressed older patients [101].
� Smaller dataset is the limitation of the most of the studies [12,100,99,49,9,48].
� For more detailed analysis, EEG can be combined with other modalities such as fMRI or fNIRS.
� More heterogeneous dataset can be collected covering the different severity stages for depression and people of varied
age groups and genders [100,13,49].
� The most effected regions of the brain due to depression need to be found and also EEG data can be collected under
varied conditions instead of rest state only [99].
� The various modalities such as EEG, GSR, and eye-tracking can be integrated to get high performance for the classifier
models.
� Significant hemispheric asymmetry can be observed in MDD patients by including more number of EEG channels [101].
� Apart from low and high, more number of classes of stress can be studied further by using voting algorithms, etc. [48].
� To the best of our knowledge, there are no public datasets available for depression based on EEG signals, so it is a
challenging task to collect the own heterogeneous dataset of MDD patients for different age groups using the different
EEG headsets.
� Most of the research studies are carried out under the laboratory conditions, they need to be tested in mobile and non-
laboratory environment for real time deployment of research models in daily life.
� For more detailed analysis, EEG data can be combined with the other parameters such as heart rate, blood pressure,
breathing patterns, and body posture.
� The levels of various biomarkers such as cortisol, alpha amylase enzyme and catecholamine should also be observed
for more validated results.
� To the best of our knowledge, no datasets are available for depression and stress, so efforts can be made to collect the
own dataset covering the various levels of the problem in varied age groups such as workers at construction sites,
children in school or the youth taking the drugs due to the various life stresses.

Alcoholism � The work can be carried further on the bigger datasets with proper selection of participant's biological characteristics
such as age group, gender, etc. [14,15,54,50].
� Systems consuming lesser storage space need to be designed [54].
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Purpose Research gaps and future directions

� The automated machine learning methods can be combined with various traditional alcohol screening methods such
as questionnaire based to achieve higher efficiency of the system and make its deployment feasible in clinical practice
[50].

Epilepsy/seizure � Most of the research studies have focused on the dataset provided by Bonn University, Germany. It has been made
available publicly for more the last 15 years and is small and less comprehensible. So, it is required to work upon more
larger and comprehensible datasets.
� The intracranial EEG recordings for epilepsy need to be replaced with more effective and simpler solutions based on
scalp EEG.
� New methods can be proposed in order to automate the selection of optimized kernel parameters for LS-SVM used in
the study [70].
� The performance can be further improved by working on larger datasets, extracting much better features, using more
pre-processing methods and using more machine learning classifiers [70,61,62,11,66].
� A work can be done to design new muscle artifact removal techniques in order to filter the epileptic dataset used in the
study [61].
� Apart from epilepsy, the proposed methodology can be used for the diagnosis of various neurological disorders based
on EEG signals such as Alzheimer, coronary artery disease [61,11].
� Bagging algorithms can be used to increase the performance of the proposed work [62].
� Efforts should be made to develop the research models that use least number of electrodes in order to make the
wearable, portable and mobile applications to be deployed in real time applications.
� Work can be done to improve the computational time of the study and to solve the multi-class classification problems
based on EEG signals [64].
� Research on seizure studies can be extended to work upon more different number of time-frequency transforms [64].
� Optimized-SVM can be used for the diagnosis of other classification problems due to its splendid ability of
classification [66].
� Different severity stages of the disease can be studied for deeper analysis or for understanding the progression of the
disease [67].
� Alzeihmer can also be included in the given classification problem along with epilepsy and autism [67].
� Optimized GSO can be used for the automatic selection of optimized parameters for different classifiers [68] or even
some other optimization algorithms can also be used for the selection procedure.
� Prediction models based on early warnings before the onset of epileptic seizures can be designed that can help to avoid
severe accidents or injuries.
� The long-term EEG recordings can be used for thorough evaluation of the proposed work [74].
� The false positives that occur due to the noise and random peaks in the epileptic signals can be handled by adding the
regularization parameters at the training stage [74].
� It is necessary to track the dynamic offsets arising due to the seizures because they lead to the degradation in
classification performance [74].
� The source location for EEG signals is required in order to characterize the spatio-temporal wave patterns [74].

Identity
authentication

� The bigger datasets containing data for multiple days, tasks, and sessions are needed to build more validated models
for biometric identification [21].
� The authentication models needs to be designed for personal needs keeping in mind the requirements such as high
performance and low cost.
� Portable EEG devices such as Emotiv Epoc can be used for the research purposes so that the models can be deployed in
practical scenarios [20].
� The performance of the system can be improved further by choosing a set of more random people who are not a part of
the training phase, thereby giving more realistic results [20].

Alzeihmer � Large and heterogeneous dataset for MCI needs to be collected and analysed for MCI and its various sub-types. Also the
study about the progression of MCI to Alzheimer can be worked upon [51].
� More advanced classification algorithms such as spiking neural networks and SVMs can be included in the work as an
extension [51].
� The combination of fuzzy systems and functional networks can be used as an effective tool for the automatic diagnosis
of various neurological diseases by making use of various machine learning algorithms [17].
� The potential biomarkers for AD can be explored with the help of N-TSK system [17].
� The early warning systems of AD with the help of machine learning algorithms can be designed.
� The concept of network theory can be integrated with the unsupervised or semi-supervised learning methods to
improve the identification performance.

Sleep stage
classification

� The accuracy for the NREM1 stage can be improved by using different feature extraction and analysis techniques [46].

� Analysis can be done on the patients with sleep related disorders.
� Large and heterogeneous databases can be used for more validated results.
� Sleep stage classification can be improved by using multiple channels of EEG and more physiological signals such as
EMG and EOG can be combined with the EEG signals for improved performance [97,46].
� The combination of RNN and CNN can be used where the raw signals are fed to the CNN for the feature extraction and
RNN does the classification task [45].
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Purpose Research gaps and future directions

� CNN and RNN can be used for the spatial and the temporal extraction of features respectively [45].
� Classification performance for the 'wake' stage can be improved and also the layer by layer errors that arise in the
hierarchical structure needs to be handled [89].
� More non-linear features such as HOS, entropies and teager energy as well as the deep learning architectures can be
used for high performance results [95].
� Study for sleep stage classification can be done on the patients with disorders such as bruxism, epilepsy, and insomnia
using various non-linear features [95].

Motor imagery � An adaptive scheme for selection of k-value (parameter for selecting the feature sub-set in the FDM) is required to be
developed with the aim to increase the discernibility between the decision classes [77].
� Various time-frequency methods can be used to convert the signals into the images [84].
� The study can be extended on exploring the various CNN models such as VGGNet, ResNet and GoogleNet [84].
� The different types of classifiers can be ensemble in a mixture mode to get more improved performance results [78].
� Bigger datasets can be explored for the research work for more validated results.
� A lot of scope is there to carry research studies on neuroprosthesis for designing the BCI systems for disable people.

Eye state
recognition

� Many of the research studies are based upon the UCI dataset for eye state recognition which is a very small dataset
containing the data samples for a single user. So, the research can be extended on bigger datasets for more validated
results.
� Temporal RBMs for time-series data models can be used for more improved learning [59].
� Work can done to increase the classification speed of the proposed models by following the algorithms having the less
intense and fast computations.
� The ensemble of deep learning architectures may be proven as the effective models for the classification problems
based on time-series data [59].
� The dataset for eye state recognition can be used for controlling various applications such as BCI, driver drowsiness,
and home automation.
� The fuzzy cognitive maps generated using LSTM and GA can be merged with IoT to provide person-centric monitoring
in the healthcare applications [58].

Emotion state
recognition

� Work can be done on more than two emotional states so that the model can be deployed to control the real-time
applications such as brain controlled wheel-chairs, video-games, etc. [80,47].
� More number of classifiers can be explored as an extended research work [80].
� Bigger and balanced datasets can be used for the research.
� Overfitting issues can be solved for improved performance results [24].
� GSR data can be combined with EEG to gain higher accuracies [24].
� More model design parameters such as the different frequency bands, number of subjects, etc., can be varied for the
testing the performance of the study [47].
� More number of complexity measures such as RQA, HOS, and sample entropy can be used to analyse the MDD patients
under different emotional states [106].
� The proposed methodology can be applied to the other neurological disorders such as schizophrenia, epilepsy, and
bipolar depression with the aim to compare the findings for all the studies [106].
� The factors such as level of severity, gender and the medication status of the subjects should also be considered in the
research work as a part of more detailed analysis [106].
� Deep neural architectures such as RNN can be used for the classification [81].
� Advanced filtering techniques and averaging methods can be designed in order to pre-process the data taken using the
Emotiv Epoc+ headset in the research studies [108].

ERP related � The concept of evoked potentials can be leveraged to find the least number of electrodes for various EEG applications
[114].
� The various machine learning techniques can be combined with the ERP features for improving the classification
performance [108].
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Deep learning and ensemble architectures can help to
improve the accuracy of the models.

(f) Non-linear and functional connectivity features can be
studied for various applications to understand the com-
plexity of the EEG signals.

9. Multi-modal fusion of brain signals

Integrating the brain signals from different neuroimaging
modalities can give better understanding and analysis of
neuronal activities. This fusion gives a more clear picture of
the neuronal structure and functions and can help in finding
the more accurate biomarkers for diagnosing various neuro-
logical and neuropsychiatric disorders. For an instance, EEG
and fMRI as the single modalities may not give high spatial and
temporal resolutions respectively. But their fusion can achieve
both. Now-a-days, the fusion of data from multiple modalities
is considered as a new research challenge because different
modalities may represent the data in the form of uncommon
patterns and with different orders and it is not easy to directly
fuse them. In the present work, we have explored some of the
research studies which have contributed in proposing the



Table 20 – Multi-modal fusion of brain signals.

Application Data Methodology Future scope/limitations

Schizophrenia
[127]

� EEG + fMRI + sMRI � Structure-revealing CMTF (coupled matrix
and tensor factorization) method (advanced
CMTF), as a fusion method, has been used
to exploit the potential biomarkers for
diagnosis of schizophrenia.

� Done on limited number of
patients.

� HC: 21, Schizophrenia
patients: 11 during an auditory
oddball task (AOD).

� Study can be carried forward to
different neurological disorders.

� Pre-processing the fused data is a
new area of interest.

� It aims at finding the unique features for
identifying the patients using multi-modal
data with shared and unshared patterns.
� It is able to provide excellent temporal and
spatial resolution.

Brain–computer
interface [128]

� EEG + NIRS (near-infrared
spectroscopy)

� An asynchronous BCI system has been
developed to accurately detect an idle class.

� The model needs to be validated in
real-time asynchronous BCI-based
paradigm.

� HC: 14 (right-handed
participants) under cue-based
paradigm

� Two subject-dependent classification
algorithms have been proposed.

� Two subject-dependent classification
algorithms have been proposed.
� The hybrid EEG-NIRS model is not only
successful in improving the classification
performance but also improves the delays
of the overall model that are caused due to
the slow hemodynamic response of NIRS.

Alzeihmer [129] �MRI + PET + CSF � Zero-masking method has been used to
fuse the data from multiple modalities.

� Four-class classification
performance is required to be
improved for deployment of the
model in clinical scenarios.

� 200 normal instances, 400
MCI instances, 200 AD patients

� A deep learning architecture combining
the multi-modal data for computer-aided
diagnosis of AD has been presented.

� More number of training samples
with smaller variance are required
to check the validity of the model.

� A performance gain has been achieved for
binary and multi-class classification
scenario.

Alzeihmer [130] � Voxel based morphometry
(VBM) + fluorodeoxyglucose
positron emission tomography
(FDG) + F-18 florbetapir PET
scans amyloid imaging (AV45)

� The present fusion methods have
following limitations: – unable to preserve
the structure information while fusing the
data from different modalities, – the
contributions of the samples from different
data is considered as equal in the fused
data.

� In future, focus can be laid on
solving the non-convex
optimization problem in multi-
modal fusion models.

� To address the above problems, a latent
correlation embedded multi-modal fusion
(LLM2F) algorithm has been proposed.
� This method is able to provide compact
representation of the multi-modal data by
exploring the latent correlations among the
different modalities and fusing the data into
a common feature level.
� To dynamically evaluate the contribution
of each sample in the fused model, a self-
optimized learning method has been
adopted.

Epilepsy [131] � EEG + fMRI � At the time of data fusion from multiple
modalities, a joint BSS (blind source
separation) problem arises. This has been
mathematically formulated in the present
work.

� In future, efforts will be made to
better understand why jointICA and
CMTF are able to provide stable EEG
and fMRI voxel signatures
respectively.
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Application Data Methodology Future scope/limitations

� Epilepsy patients: 5 (right
temporal) and 5 (left temporal)

� To solve the above issue, different
approaches such as joint independent
component analysis (jointICA) and coupled
matrix-tensor factorization (CMTF) have
been presented as solutions.

� Efforts will be made to explore
more advanced models such as
advanced matrix-tensor
decomposition (ACMTF).

� These have been used to fuse EEG and
fMRI data for analysing the interictal
activities with high spatio-temporal
resolution.
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solutions for fusing the data from multiple modalities. These
have been tabulated in Table 20.

10. Conclusion

The functional neuroimaging capabilities such as excellent
temporal resolution, non-invasiveness, inexpensiveness, and
safe nature makes the study of EEG to be very crucial for
understanding the dynamically changing complex processes
of the brain. The varied frequency rhythms are associated with
different functional states of the brain. Any minute changes in
the frequencies of these rhythms can be well captured by the
EEG signals. These signals are analysed with the help of
computer-aided technologies with greater accuracies and
speed.

The present study explores a number of data acquisition
methods for wide variety of applications based on EEG signals.
A comparative analysis of the signal processing methods has
been made that involves a number of pre-processing, feature
extraction, and postprocessing techniques. Then, the result
analysis stage is discussed, mainly focusing on the classifica-
tion methods based upon various machine learning models.
From the studies, it can be concluded that every stage has its
own crucial role in processing the raw EEG signals. Each of the
stages- preprocessing, feature extraction, post-processing,
and result analysis play a very significant role in processing
the raw time-domain EEG signals for developing the comput-
er-aided automated decision models. Pre-processing the raw
signals at the first stage diminishes the unwanted frequency
components and noise from the signals, thereby, enhancing
the quality of the signals. At next stage, various feature
extraction methods are adopted to represent the high-
dimensional EEG data in the form of most discriminating
features, without this step, the performance of the decision
model might get degraded. Then, if the data is still very high
dimensional or suffers from a problem of overfitting, feature
selection and reduction algorithms play their significant role,
thereby reducing the burden on the computational resources
and cost of the model. The signals are still of no use, unless
they are not processed through the classification models (such
as traditional algorithms or deep learning architectures) or the
statistical tests for some decision making or deducing some
findings through them. From the survey, it can be concluded
that maximum number of studies are preprocessing the
signals with the help of artifact handling methods, then for
feature extraction studies, maximum studies have worked
upon the statistical features and in future, there is a greater
scope to work upon the functional connectivity based features,
then post-processing is done with the aim to reduce the
computational burden, for that, maximum studies are based
upon selecting the most significant features with the help of
various feature selection methods, and lastly, for the result
analysis phase, maximum number of studies are focusing on
the classification algorithms for developing the automated
recognition systems for various applications.

It is very time consuming and tedious task to manually
analyse the complex and non-stationary EEG signals and the
analysis results vary a lot depending upon the expertise
experience of the visualizers. So, now-a-days, a lot of research
is going on analysis the EEG signals using various computer-
aided technologies that could automate the analysis task
thereby giving fast and highly accurate results. From the
survey, it can be concluded that these computer-based
systems make use of various signal processing and machine
learning schemes to automatically conclude the happening of
some neuronal activity using EEG signals. Computer-based
programming languages or softwares such as MATLAB,
python, R, WEKA, and so on are used to implement these
signal processing methods and machine learning techniques.
It can be concluded that EEG based computer-aided systems
have shown their potential successfully in various research
applications, covering the diagnosis of different neurological
disorders such as epilepsy/seizure, alcohol related disorders,
depression, and dementia to the monitoring of other applica-
tions including emotion recognition, identity authentication,
sleep stage classification, eye state detection, motor imagery
and drowsiness monitoring. Then, the future scope of the
various studies has been summarized in order to inspire the
readers to take the study of EEG signals based on computer-
aided technologies to more higher level of research. Finally,
some of the research studies have been explored that focuses
on the fusion of brain signals from multiple modalities.

In future, efforts will be made to explore more advanced
applications on EEG signals and study a wide variety of signal
processing and classification methods used in their analysis.
There are various applications that are least or not covered in
the present study that are working upon EEG based computer-
aided methods in their analysis. Such as study of EEG signals
for patients with neurological disorders like Huntington's
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disease, Schizophernia, Autism, Strokes, Rett syndrome,
attention deficit hyperactivity disorder (ADHD), and sleep
related disorders. Efforts will be made to cover the extent of
research going on signal processing and classification meth-
ods used in these applications. It has been observed that
maximum number of studies on EEG based diagnosis of
epilepsy using computer-aided methods have worked upon a
very small dataset containing the EEG signals for only 5
patients. So, in future, efforts will be made to collect the data
for more number of epileptic patients from a renowned
hospital to create huge and heterogeneous (data of patients
with varying age, gender, and so on) dataset. Advanced signal
processing methods and classification methods will be used to
process these signals with the aim to get more validated
results and higher classification accuracies. Next, to the best of
our knowledge, it has been studied that no EEG dataset is
publicly available for Major Depressive Disorder (MDD) that
has led to the limited research on this field. As a part of future
Table 21 – List of acroynms and abbreviations.

Acronynm/
abbreviation

Full form 

AAR Adaptive auto-regressive 

AC Asymmetry coefficient 

AD Alzheimer's disease 

ADhall+ AD with hallucinations 

ADhall- AD without hallucinations 

AEP Auditory evoked potentials 

AMI Auto-mutual information 

ANN Artificial neural network 

ANOVA One-way analysis of variance 

AP Absolute power 

APV Alpha band power variability 

AUC Area under curve 

AUD Alcohol use disorder 

BCI Brain computer interface 

BDL Bandwidth-duration localized 

BOLD Blood oxygenation level depredent
signal

Bedge Edge betweeness 

Bnodal Node betweeness 

C Clustering coefficient 

CD Correlation dimension 

CDET Compensation distance evaluation
technique

CWT Continuous wavelet transform 

CNN Convolutional neural network 

CTM Central tendency measure 

CV Cross validation 

DASM Differential asymmetry 

DBN Deep belief network 

DD-DWT Double-density discrete wavelet
transform

DE Differential entropy 

DEAP Database for Emotion Analysis using
Physiological Signals

Appendix A. List of acroynms and abbreviations

The list of abbreviations and acroynms has been summarized
work, it has been planned to extend the work on EEG based
depression diagnosis by creating the huge dataset of the
patients and working towards their analysis using various
signal processing and classification methods.
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Acronynm/
abbreviation

Full form

KFD Katz fractral dimension
KNN K-nearest neighbor
KPCA Kernel principal component analysis
LD Linear discriminant
LDA Linear discriminant analysis
LE Laplacian eigenmaps
LMS Least mean square
LLE Locally linear embedding
LL2N Logarithm of L2 norm
LMT Logistic model tree
LOOCV leave one out cross validation
LR Logistic regression
LSTM Long short – term memory
LS-SVM Least square support vector machine
LASSO Least absolute shrinkage and selection

operator
LVHA Low valence high arousal

LVLA Low valence low arousal
LZC Lempel-ziv complexity
M Male
MaxF Maximum frequency
MCC Matthews correlation coefficient

MCI Mild cognitive impairment
MDD Major depressive disorder
ME Mixture of experts
MEG Magnetoencephalogram
MKLSVM Multiple kernel learning SVM
MLP Multi-layer perceptron
MLPNN Multi-layer perceptron neural networks

MMSE Mini Mental State Examination
MODWPT Maximal overlap discrete wavelet

package transform

 in Table 21.
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Acronynm/
abbreviation

Full form Acronynm/
abbreviation

Full form

DLB Dementia with Lewy bodies mRMR Minimum redundancy maximum
relevance

DLBhall+ Dementia with Lewy bodies with
hallucinations

MSE Multiscale sample entropy

DFA Defrended fluctuation analysis MPE Multiscale permutation entropy
DM Discernibility matrix NB Naïve Bayesian
DNN Deep neural network NN Neural network
DPI Depth perception indication NREM Non-rapid eye movement
DT Decision tree N-TSK Network based Takagi–Surgeno–Kang
DWT Discrete wavelet transform PCA Principal component analysis
EC Eyes closed PD Parkinson disease
ECG Electrocardiogram PET Positron emission tomography
EEG Electroencephalogram PFD Petrosian fractral dimension
EI Electrode impedance PNN Probabilistic neural network
EMD Empirical mode decomposition PPV Positive predictive value
EMG Electromyogram PSD Power spectral density
ELM_sig Extreme learning machine with

sigmoid activation function
PSI Phase synchronization index

ELM_RBF Extreme learning machine with RBF
kernel

QDA Quadratic discriminant analysis

EO Eyes open Q1F First quartile frequency
EOG Electrooculogram Q3F Third quartile frequency
EPN Early posterior negativity RASM Rational asymmetry
EPSPs Exhibitory post synaptic graded

potentials
RBF Radial basis function

ERP Event related potentials RBM Restricted Boltzmann machine
EWT Empirical wavelet transform REM Rapid eye movement
Eglobal Global efficiency RF Random forest
Elocal Local efficiency RGP Relative gamma power
F Female RLS Recursive least square
FAWT Flexible analytical wavelet transform RNN Recurrent neural network
FD Fractral dimension ROC Receiver operating curve
FDM Fuzzy discernibility matrix RP Relative power
FFT Fast Fourier transform RPS Reconstructed phase space
FIR Finite impulse response RQA Recurrence quantification analysis
FLDA Fisher linear discriminant analysis RVS Repetitive visual stimulus
fMRI Functional magnetic resonance

imaging
RWECN Relative wavelet entropy in complex

networks
fNIRS Functional near infrared spectroscopy SASI Spectral asymmetry index
GBDT Gradient boosting decision tree SDS Self-rating depression score
GBM Gradient boosting machine SEP Somatosensory evoked potentials
GDA Gaussian discriminant analysis SHHS Sleep Heart Health Study
GGD Generalized Gaussian distribution SHR Split-half-reliability
GRNN Generalized regression neural network SSVEP Steady-state visual evoked potentials
GSLT-CNN CNN with global spatial and local

temporal filter
SQUIDs Superconducting quantum interference

devices
GSO Grid search optimizer SSD Spectral standard deviation
GSR Galvanic skin response STFT Short time Fourier transform
GST Generalized Stockwell transform SVD Single value based decomposition
HC Healthy control SVM Support vector machine
HDCA Hierarchical discriminant component

analysis
SWS Slow wave sleep

HE Hurst exponent TCOWFB Three-channel orthogonal wavelet filter
bank

HFD Higuchi fractral dimension TMS Transcranial magnetic stimulation
HOS Higher order spectra TSST Trier social stress test
HVHA High valence high arousal TWSVM Twin SVM
HVLA High valence low arousal TQWT Tunable-Q wavelet transform
IAPS International Affective Picture System UCI University of California Irvine
ICA Independent component analysis USVM Universum SVM
IIR Infinite impulse response UTSVM Universum twin SVM
IMFs Intrinsic mode functions VAT Visual analog test
IPSPs Inhibitory post synaptic graded

potentials
VEP Visually evoked potentials

IR Interquartile range WT Wavelet transform
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Acronynm/
abbreviation

Full form Acronynm/
abbreviation

Full form

ISOMAP Isometric feature mapping WPD Wavelet packet decomposition
KC Kolmogorov complexity XGBoost Extreme gradient boosting

b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 6 4 9 – 6 9 0 687
r e f e r e n c e s

[1] La Vaque T. The history of EEG Hans Berger:
psychophysiologist. A historical vignette. J Neurother
1999;3(2):1–9.

[2] Bronzino JD. Biomedical engineering handbook, vol. 2. CRC
Press; 1999.

[3] Kandel ER, Schwartz JH, Jessell TM, D. of Biochemistry,
Jessell MB, Siegelbaum S, et al. Principles of neural science,
vol. 4. New York: McGraw-Hill; 2000.

[4] Beres AM. Time is of the essence: a review of
electroencephalography (EEG) and event-related brain
potentials (ERPS) in language research. Appl Psychophysiol
Biofeedback 2017;42(4):247–55.

[5] Novik O, Smirnov F, Volgin M. Structures of the brain.
Electromagnetic Geophysical Fields. Springer; 2019. p. 69–
89.

[6] Das S, Tripathy D, Raheja JL. An insight to the human brain
and EEG. Real-Time BCI System Design to Control Arduino
Based Speed Controllable Robot Using EEG. Springer; 2019.
p. 13–24.

[7] Teplan M, et al. Fundamentals of EEG measurement. Meas
Sci Rev 2002;2(2):1–11.

[8] Da Silv FL. Electroencephalography: basic principles,
clinical applications, and related fields. Lippencott
Wlliams & Wilkins; 2005.

[9] Mumtaz W, Xia L, Ali SSA, Yasin MAM, Hussain M, Malik
AS. Electroencephalogram (EEG)-based computer-aided
technique to diagnose major depressive disorder (MDD).
Biomed Signal Process Control 2017;31:108–15.

[10] Subasi A. Eeg signal classification using wavelet feature
extraction and a mixture of expert model. Expert Syst Appl
2007;32(4):1084–93.

[11] Zhang T, Chen W, Li M. Generalized Stockwell transform
and SVD-based epileptic seizure detection in EEG using
random forest. Biocybern Biomed Eng 2018;38(3):519–34.

[12] Mumtaz W, Ali SSA, Yasin MAM, Malik AS. A machine
learning framework involving EEG-based functional
connectivity to diagnose major depressive disorder (MDD).
Med Biol Eng Comput 2018;56(2):233–46.

[13] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H, Subha DP.
Automated EEG-based screening of depression using deep
convolutional neural network. Comput Methods Programs
Biomed 2018;161:103–13.

[14] Anuragi A, Sisodia DS. Alcohol use disorder detection
using EEG signal features and flexible analytical wavelet
transform. Biomed Signal Process Control 2019;52:384–93.

[15] Mumtaz W, Kamel N, Saad MNbM, Ali SSA, Malik AS. An
EEG-based functional connectivity measure for automatic
detection of alcohol use disorder. Artif Intell Med
2018;84:79–89.

[16] Yuvaraj R, Acharya UR, Hagiwara Y. A novel Parkinson's
disease diagnosis index using higher-order spectra
features in EEG signals. Neural Comput Appl 2018;30
(4):1225–35.

[17] Yu H, Lei X, Song Z, Liu C, Wang J. Supervised network-
based fuzzy learning of EEG signals for Alzheimer's
disease identification. IEEE Trans Fuzzy Syst 2019.

[18] Ofner P, Müller-Putz GR. Movement target decoding from
EEG and the corresponding discriminative sources: a
preliminary study. 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE; 2015. p. 1468–71.

[19] Müller-Putz GR, Ofner P, Schwarz A, Pereira J, Pinegger A,
Dias CL, et al. Towards non-invasive EEG-based arm/hand-
control in users with spinal cord injury. 2017 5th
International Winter Conference on Brain–Computer
Interface (BCI). IEEE; 2017. p. 63–5.

[20] Zeng Y, Wu Q, Yang K, Tong L, Yan B, Shu J, et al. EEG-
based identity authentication framework using face rapid
serial visual presentation with optimized channels.
Sensors 2019;19(1):6.

[21] Chen J, Mao Z, Yao W, Huang Y. EEG-based biometric
identification with convolutional neural network.
Multimedia Tools Appl 2019;1–21.

[22] Wang Q, Zhao D, Wang Y, Hou X. Ensemble learning
algorithm based on multi-parameters for sleep staging.
Med Biol Eng Comput 2019;1–15.

[23] Blanco JA, Vanleer AC, Calibo TK, Firebaugh SL. Single-trial
cognitive stress classification using portable wireless
electroencephalography. Sensors 2019;19(3):499.

[24] Seo J, Laine TH, Sohn K-A. Machine learning approaches
for boredom classification using EEG. J Amb Intell Human
Comput 2019;1–16.

[25] Kaur B, Singh D, Roy PP. Eyes open and eyes close activity
recognition using EEG signals. International Conference on
Cognitive Computing and Information Processing.
Springer; 2017. p. 3–9.

[26] Saghafi A, Tsokos CP, Goudarzi M, Farhidzadeh H. Random
eye state change detection in real-time using EEG signals.
Expert Syst Appl 2017;72:42–8.

[27] Chen L-l, Zhao Y, Zhang J, Zou J-z. Automatic detection of
alertness/drowsiness from physiological signals using
wavelet-based nonlinear features and machine learning.
Expert Syst Appl 2015;42(21):7344–55.

[28] Brašic´ JR, Mohamed M. Human brain imaging of autism
spectrum disorders. Imaging of the human brain in health
and disease. Elsevier; 2014. p. 373–406.

[29] Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H.
Neuroimaging markers for the prediction and early
diagnosis of Alzheimer's disease dementia. Trends
Neurosci 2011;34(8):430–42.

[30] Crosson B, Ford A, McGregor KM, Meinzer M, Cheshkov S,
Li X, et al. Functional imaging and related techniques: an
introduction for rehabilitation researchers. J Rehabil Res
Dev 2010;47(2). vii.

[31] Wong DF, Gründer G, Brašic´ JR. Brain imaging research:
does the science serve clinical practice? Int Rev Psychiatry
2007;19(5):541–58.

[32] Malhi G, Lagopoulos J. Making sense of neuroimaging in
psychiatry. Acta Psychiatr Scand 2008;117(2):100–17.

[33] Mier W, Mier D. Advantages in functional imaging of the
brain. Front Human Neurosci 2015;9:249.

[34] Walsh V, Cowey A. Transcranial magnetic stimulation and
cognitive neuroscience. Nat Rev Neurosci 2000;1(1):73.

[35] He B, Yang L, Wilke C, Yuan H. Electrophysiological
imaging of brain activity and connectivity – challenges
and opportunities. IEEE Trans Biomed Eng 2011;58
(7):1918–31.

http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0005
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0005
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0005
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0010
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0010
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0015
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0015
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0015
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0020
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0020
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0020
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0020
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0025
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0025
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0025
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0030
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0030
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0030
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0030
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0035
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0035
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0040
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0040
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0040
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0045
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0045
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0045
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0045
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0050
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0050
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0050
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0055
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0055
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0055
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0060
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0060
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0060
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0060
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0065
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0065
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0065
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0065
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0070
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0070
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0070
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0075
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0075
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0075
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0075
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0080
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0080
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0080
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0080
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0085
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0085
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0085
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0090
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0090
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0090
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0090
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0090
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0095
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0095
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0095
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0095
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0095
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0100
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0100
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0100
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0100
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0105
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0105
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0105
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0110
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0110
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0110
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0115
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0115
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0115
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0120
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0120
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0120
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0125
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0125
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0125
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0125
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0130
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0130
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0130
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0135
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0135
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0135
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0135
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0140
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0140
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0140
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0145
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0145
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0145
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0145
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0150
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0150
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0150
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0150
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0155
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0155
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0155
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0160
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0160
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0165
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0165
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0170
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0170
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0175
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0175
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0175
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0175


b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 6 4 9 – 6 9 0688
[36] Babiloni C, Pizzella V, Del Gratta C, Ferretti A, Romani GL.
Fundamentals of electroencefalography,
magnetoencefalography, and functional magnetic
resonance imaging. Int Rev Neurobiol 2009;86:67–80.

[37] Braisby N. Cognitive psychology: a methods companion.
Oxford University Press; 2005.

[38] Rossini PM, Dal Forno G. Integrated technology for
evaluation of brain function and neural plasticity. Phys
Med Rehabil Clin 2004;15(1):263–306.

[39] Michel CM, Murray MM. Towards the utilization of EEG as
a brain imaging tool. NeuroImage 2012;61(2):371–85.

[40] Sörnmo L, Laguna P. Bioelectrical signal processing in
cardiac and neurological applications, vol. 8. Academic
Press; 2005.

[41] Adrian ED, Matthews BH. The berger rhythm: potential
changes from the occipital lobes in man. Brain 1934;57
(4):355–85.

[42] Walter WG, Dovey VJ. Electroencephalography in cases of
sub-cortical tumour. J Neurol Neurosurg Psychiatry 1944;7
(3–4):57. Jul.

[43] Campisi P, La Rocca D. Brain waves for automatic
biometric-based user recognition. IEEE Trans Inform
Forensics Secur 2014;9(5):782–800.

[44] Kumar JS, Bhuvaneswari P. Analysis of
electroencephalography (EEG) signals and its
categorization – a study. Proc Eng 2012;38:2525–36.

[45] Michielli N, Acharya UR, Molinari F. Cascaded lstm
recurrent neural network for automated sleep stage
classification using single-channel EEG signals. Comput
Biol Med 2019;106:71–81.

[46] Jiang D, Lu Y-n, Yu M, Yuanyuan W. Robust sleep stage
classification with single-channel EEG signals using
multimodal decomposition and hmm-based refinement.
Expert Syst Appl 2019;121:188–203.

[47] Atkinson J, Campos D. Improving BCI-based emotion
recognition by combining EEG feature selection and kernel
classifiers. Expert Syst Appl 2016;47:35–41.

[48] Jebelli H, Hwang S, Lee S. EEG-based workers' stress
recognition at construction sites. Autom Constr
2018;93:315–24.

[49] Bachmann M, Päeske L, Kalev K, Aarma K, Lehtmets A,
Ööpik P, et al. Methods for classifying depression in single
channel EEG using linear and nonlinear signal analysis.
Comput Methods Programs Biomed 2018;155:11–7.

[50] Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA.
Automatic diagnosis of alcohol use disorder using EEG
features. Knowl-Based Syst 2016;105:48–59.

[51] Ruiz-Gómez S, Gómez C, Poza J, Gutiérrez-Tobal G, Tola-
Arribas M, Cano M, et al. Automated multiclass
classification of spontaneous EEG activity in Alzheimer's
disease and mild cognitive impairment. Entropy 2018;20
(1):35.

[52] Dauwan M, Linszen MM, Lemstra AW, Scheltens P, Stam
CJ, Sommer IE. EEG-based neurophysiological indicators of
hallucinations in Alzheimer's disease: comparison with
dementia with Lewy bodies. Neurobiol Aging 2018;67:75–
83.

[53] Zhang XL, Begleiter H, Porjesz B, Wang W, Litke A. Event
related potentials during object recognition tasks. Brain
Res Bull 1995;38(6):531–8.

[54] Patidar S, Pachori RB, Upadhyay A, Acharya UR. An
integrated alcoholic index using tunable-q wavelet
transform based features extracted from EEG signals for
diagnosis of alcoholism. Appl Soft Comput 2017;50:71–8.

[55] Faust O, Acharya R, Allen AR, Lin C. Analysis of EEG signals
during epileptic and alcoholic states using AR modeling
techniques. IRBM 2008;29(1):44–52.

[56] Rösler O, Suendermann D. A first step towards eye state
prediction using EEG. Proc of the AIHLS; 2013.
[57] Zhou Z, Li P, Liu J, Dong W. A novel real-time EEG based
eye state recognition system. International Conference on
Communications and Networking in China. Springer; 2018.
p. 175–83.

[58] Duneja A, Puyalnithi T, Vankadara MV, Chilamkurti N.
Analysis of inter-concept dependencies in disease
diagnostic cognitive maps using recurrent neural network
and genetic algorithms in time series clinical data for
targeted treatment. J Amb Intell Human Comput 2018;1–9.

[59] Reddy TK, Behera L. Online eye state recognition from EEG
data using deep architectures. 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE;
2016. p. 000712–7.

[60] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P,
Elger CE. Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical
activity: dependence on recording region and brain state.
Phys Rev E 2001;64(6):061907.

[61] Zhang T, Chen W, Li M. Classification of inter-ictal and
ictal EEGs using multi-basis MODWPT, dimensionality
reduction algorithms and LS-SVM: a comparative study.
Biomed Signal Process Control 2019;47:240–51.

[62] Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep
convolutional neural network for the automated detection
and diagnosis of seizure using EEG signals. Comput Biol
Med 2018;100:270–8.

[63] Subasi A, Gursoy MI. EEG signal classification using PCA,
ICA, LDA and support vector machines. Expert Syst Appl
2010;37(12):8659–66.

[64] Richhariya B, Tanveer M. Eeg signal classification using
universum support vector machine. Expert Syst Appl
2018;106:169–82.

[65] Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG
processing for computer-aided seizure detection and
epilepsy diagnosis. Seizure 2015;26:56–64.

[66] Li M, Chen W, Zhang T. Automatic epilepsy detection
using wavelet-based nonlinear analysis and optimized
SVM. Biocybern Biomed Eng 2016;36(4):708–18.

[67] Ibrahim S, Djemal R, Alsuwailem A.
Electroencephalography (EEG) signal processing for
epilepsy and autism spectrum disorder diagnosis.
Biocybern Biomed Eng 2018;38(1):16–26.

[68] Wang X, Gong G, Li N. Automated recognition of epileptic
EEG states using a combination of symlet wavelet
processing, gradient boosting machine, and grid search
optimizer. Sensors 2019;19(2):219.

[69] Andrzejak RG, Schindler K, Rummel C. Nonrandomness,
nonlinear dependence, and nonstationarity of
electroencephalographic recordings from epilepsy
patients. Phys Rev E 2012;86(4):046206.

[70] Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya
UR. A novel approach for automated detection of focal EEG
signals using empirical wavelet transform. Neural Comput
Appl 2018;29(8):47–57.

[71] Brinkmann BH, Wagenaar J, Abbot D, Adkins P, Bosshard
SC, Chen M, et al. Crowdsourcing reproducible seizure
forecasting in human and canine epilepsy. Brain 2016;139
(6):1713–22.

[72] Sudalaimani C, Sivakumaran N, Elizabeth TT, Rominus VS.
Automated detection of the preseizure state in EEG signal
using neural networks. Biocybern Biomed Eng 2019;39
(1):160–75.

[73] Shoeb AH. Application of machine learning to epileptic
seizure onset detection and treatment. Massachusetts
Institute of Technology; 2009 [Ph.D. thesis].

[74] Quintero-Rincón A, Pereyra M, D'Giano C, Risk M,
Batatia H. Fast statistical model-based classification of
epileptic EEG signals. Biocybern Biomed Eng 2018;38
(4):877–89.

http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0180
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0180
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0180
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0180
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0185
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0185
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0190
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0190
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0190
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0195
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0195
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0200
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0200
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0200
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0205
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0205
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0205
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0210
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0210
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0210
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0215
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0215
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0215
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0220
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0220
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0220
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0225
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0225
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0225
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0225
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0230
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0230
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0230
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0230
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0235
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0235
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0235
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0240
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0240
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0240
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0245
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0245
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0245
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0245
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0250
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0250
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0250
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0255
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0255
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0255
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0255
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0255
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0260
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0260
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0260
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0260
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0260
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0265
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0265
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0265
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0270
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0270
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0270
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0270
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0275
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0275
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0275
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0280
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0280
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0285
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0285
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0285
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0285
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0290
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0290
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0290
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0290
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0290
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0295
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0295
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0295
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0295
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0300
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0300
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0300
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0300
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0300
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0305
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0305
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0305
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0305
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0310
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0310
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0310
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0310
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0315
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0315
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0315
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0320
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0320
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0320
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0325
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0325
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0325
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0330
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0330
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0330
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0335
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0335
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0335
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0335
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0340
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0340
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0340
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0340
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0345
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0345
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0345
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0345
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0350
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0350
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0350
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0350
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0355
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0355
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0355
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0355
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0360
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0360
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0360
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0360
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0365
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0365
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0365
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0370
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0370
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0370
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0370


b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 6 4 9 – 6 9 0 689
[75] Alhaddad MJ, Kamel MI, Malibary HM, Alsaggaf EA, Thabit
K, Dahlwi F, et al. Diagnosis autism by fisher linear
discriminant analysis flda via EEG. Int J Bio-Sci Bio-
Technol 2012;4(2):45–54.

[76] BCI-competition-II, dataset III. Department of Medical
Informatics, Institute for Biomedical Engineering,
University of Technology Graz; 2004,
http://www.bbci.de/competition/ii/.

[77] Chatterjee R, Maitra T, Islam SH, Hassan MM, Alamri A,
Fortino G. A novel machine learning based feature
selection for motor imagery EEG signal classification in
internet of medical things environment. Fut Gen Comput
Syst 2019;98:419–34.

[78] Chatterjee R, Datta A, Sanyal DK. Ensemble learning
approach to motor imagery EEG signal classification.
Machine Learning in Bio-Signal Analysis and Diagnostic
Imaging. Elsevier; 2019. p. 183–208.

[79] Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A,
Ebrahimi T, et al. Deap: a database for emotion analysis;
using physiological signals. IEEE Trans Affect Comput
2011;3(1):18–31.

[80] Pandey P, Seeja K. Emotional state recognition with EEG
signals using subject independent approach. Data Science
and Big Data Analytics. Springer; 2019. p. 117–24.

[81] Pandey P, Seeja K. Subject-independent emotion detection
from EEG signals using deep neural network. International
Conference on Innovative Computing and
Communications. Springer; 2019. p. 41–6.

[82] Blankertz B, Muller K-R, Krusienski DJ, Schalk G, Wolpaw
JR, Schlogl A, et al. The BCI competition III: validating
alternative approaches to actual BCI problems. IEEE Trans
Neural Syst Rehabil Eng 2006;14(2):153–9.

[83] Behri M, Subasi A, Qaisar SM. Comparison of machine
learning methods for two class motor imagery tasks using
EEG in brain–computer interface. 2018 Advances in
Science and Engineering Technology International
Conferences (ASET). IEEE; 2018. p. 1–5.

[84] Chaudhary S, Taran S, Bajaj V, Sengur A. Convolutional
neural network based approach towards motor imagery
tasks EEG signals classification. IEEE Sens J 2019;19
(12):4494–500.

[85] Schalk G, McFarland DJ, Hinterberger T, Birbaumer N,
Wolpaw JR. Bci2000: a general-purpose brain-computer
interface (BCI) system. IEEE Trans Biomed Eng 2004;51
(6):1034–43.

[86] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, et al. Physiobank, physiotoolkit, and
physionet: components of a new research resource for
complex physiologic signals. Circulation 2000;101(23):
e215–20.

[87] Zhang X, Yao L, Zhang D, Wang X, Sheng QZ, Gu T. Multi-
person brain activity recognition via comprehensive EEG
signal analysis. Proceedings of the 14th EAI International
Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services. ACM; 2017. p. 28–37.

[88] Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan
IA, et al. Complexity analysis of EEG motor movement
with eye open and close subjects using multiscale
permutation entropy (MPE) technique. Biomed Res 2017;28
(16).

[89] Tian P, Hu J, Qi J, Ye X, Che D, Ding Y, et al. A hierarchical
classification method for automatic sleep scoring using
multiscale entropy features and proportion information of
sleep architecture. Biocybern Biomed Eng 2017;37(2):263–71.

[90] S. C. C. O. T. J. S. O. S. R. S. (JSSR), Hori T, Sugita Y, Koga E,
Shirakawa S, Inoue K, et al. Proposed supplements and
amendments to 'a manual of standardized terminology,
techniques and scoring system for sleep stages of human
subjects', the rechtschaffen & kales (1968) standard.
Psychiatry Clin Neurosci 2001;55(3):305–10.

[91] Mourtazaev M, Kemp B, Zwinderman A, Kamphuisen H.
Age and gender affect different characteristics of slow
waves in the sleep EEG. Sleep 1995;18(7):557–64.

[92] Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberye
JJ. Analysis of a sleep-dependent neuronal feedback loop:
the slow-wave microcontinuity of the EEG. IEEE Trans
Biomed Eng 2000;47(9):1185–94.

[93] Ichimaru Y, Moody G. Development of the
polysomnographic database on CD-ROM. Psychiatry Clin
Neurosci 1999;53(2):175–7.

[94] Correa AG, Orosco L, Laciar E. Automatic detection of
drowsiness in EEG records based on multimodal analysis.
Med Eng Phys 2014;36(2):244–9.

[95] Tripathy R, Acharya UR. Use of features from RR-time
series and EEG signals for automated classification of sleep
stages in deep neural network framework. Biocybern
Biomed Eng 2018;38(4):890–902.

[96] Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O'Connor
GT, et al. The sleep heart health study: design, rationale,
and methods. Sleep 1997;20(12):1077–85.

[97] Sors A, Bonnet S, Mirek S, Vercueil L, Payen J-F. A
convolutional neural network for sleep stage scoring from
raw single-channel EEG. Biomed Signal Process Control
2018;42:107–14.

[98] Tylová L, Kukal J, Hubata-Vacek V, Vyšata O. Unbiased
estimation of permutation entropy in EEG analysis for
alzheimer's disease classification. Biomed Signal Process
Control 2018;39:424–30.

[99] Hosseinifard B, Moradi MH, Rostami R. Classifying
depression patients and normal subjects using machine
learning techniques and nonlinear features from EEG
signal. Comput Methods Programs Biomed 2013;109
(3):339–45.

[100] Sharma M, Achuth P, Deb D, Puthankattil SD, Acharya UR.
An automated diagnosis of depression using three-
channel bandwidth-duration localized wavelet filter bank
with EEG signals. Cogn Syst Res 2018;52:508–20.

[101] Ding X, Yue X, Zheng R, Bi C, Li D, Yao G. Classifying major
depression patients and healthy controls using EEG, eye
tracking and galvanic skin response data. J Affect Disord
2019;251:156–61.

[102] Lotfan S, Shahyad S, Khosrowabadi R, Mohammadi A,
Hatef B. Support vector machine classification of brain
states exposed to social stress test using EEG-based brain
network measures. Biocybern Biomed Eng 2019;39(1):199–
213.

[103] Pereira J, Ofner P, Müller-Putz GR. Goal-directed or
aimless? EEG differences during the preparation of a
reach-and-touch task. 2015 37th Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE; 2015. p. 1488–91.

[104] Ofner P, Müller-Putz GR. Using a noninvasive decoding
method to classify rhythmic movement imaginations of
the arm in two planes. IEEE Trans Biomed Eng 2014;62
(3):972–81.

[105] Ofner P, Schwarz A, Pereira J, Müller-Putz GR. Movements
of the same upper limb can be classified from low-
frequency time-domain EEG signals. Proceedings of the
Sixth International Brain-Computer Interface Meeting: BCI
Past, Present, and Future (June 2016); 2016.

[106] Akar SA, Kara S, Agambayev S, Bilgiç V. Nonlinear analysis
of EEGs of patients with major depression during different
emotional states. Comput Biol Med 2015;67:49–60.

[107] Singh MI, Singh M. Development of a real time emotion
classifier based on evoked EEG. Biocybern Biomed Eng
2017;37(3):498–509.

http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0375
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0375
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0375
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0375
http://www.bbci.de/competition/ii/
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0385
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0385
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0385
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0385
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0385
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0390
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0390
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0390
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0390
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0395
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0395
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0395
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0395
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0400
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0400
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0400
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0405
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0405
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0405
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0405
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0410
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0410
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0410
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0410
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0415
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0415
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0415
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0415
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0415
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0420
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0420
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0420
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0420
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0425
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0425
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0425
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0425
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0430
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0430
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0430
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0430
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0430
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0435
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0435
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0435
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0435
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0435
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0440
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0440
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0440
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0440
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0440
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0445
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0445
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0445
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0445
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0450
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0450
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0450
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0450
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0450
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0450
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0455
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0455
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0455
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0460
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0460
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0460
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0460
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0465
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0465
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0465
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0470
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0470
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0470
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0475
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0475
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0475
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0475
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0480
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0480
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0480
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0485
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0485
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0485
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0485
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0490
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0490
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0490
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0490
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0495
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0495
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0495
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0495
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0495
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0500
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0500
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0500
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0500
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0505
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0505
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0505
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0505
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0510
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0510
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0510
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0510
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0510
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0515
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0515
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0515
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0515
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0515
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0520
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0520
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0520
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0520
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0525
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0525
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0525
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0525
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0525
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0530
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0530
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0530
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0535
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0535
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0535


b i o c y b e r n e t i c s a n d b i o m e d i c a l e n g i n e e r i n g 4 0 ( 2 0 2 0 ) 6 4 9 – 6 9 0690
[108] Kotowski K, Stapor K, Leski J, Kotas M. Validation of
emotiv EPOC+ for extracting ERP correlates of emotional
face processing. Biocybern Biomed Eng 2018;38(4):773–81.

[109] Öner M, Hu G. Analyzing one-channel EEG signals for
detection of close and open eyes activities. 2013 Second
IIAI International Conference on Advanced Applied
Informatics. IEEE; 2013. p. 318–23.

[110] Karamacoska D, Barry RJ, Steiner GZ. Using principal
components analysis to examine resting state EEG in
relation to task performance. Psychophysiology 2019;56(5):
e13327.

[111] Gao Z, Li S, Cai Q, Dang W, Yang Y, Mu C, et al. Relative
wavelet entropy complex network for improving EEG-
based fatigue driving classification. IEEE Trans Instrum
Meas 2018.

[112] Ajami S, Mahnam A, Abootalebi V. Development of a
practical high frequency brain-computer interface based
on steady-state visual evoked potentials using a single
channel of EEG. Biocybern Biomed Eng 2018;38(1):106–14.

[113] Abromavicius V, Serackis A. Eye and EEG activity markers
for visual comfort level of images. Biocybern Biomed Eng
2018;38(4):810–8.

[114] Stehlin SA, Nguyen XP, Niemz MH. Eeg with a reduced
number of electrodes: where to detect and how to improve
visually, auditory and somatosensory evoked potentials.
Biocybern Biomed Eng 2018;38(3):700–7.

[115] Grundlehner B, Mihajlovic´ V. Ambulatory EEG monitoring;
2019.

[116] Jiang X, Bian G-B, Tian Z. Removal of artifacts from EEG
signals: a review. Sensors 2019;19(5):987.

[117] Ghare PS, Paithane A. Human emotion recognition using
non linear and non stationary EEG signal. 2016
International Conference on Automatic Control and
Dynamic Optimization Techniques (ICACDOT). IEEE; 2016.
p. 1013–6.

[118] Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal
features extraction using linear analysis in frequency and
time-frequency domains. ISRN Neurosc 2014.

[119] Borisagar KR, Thanki RM, Sedani BS. Fourier transform,
short-time fourier transform, and wavelet transform.
Speech enhancement techniques for digital hearing aids.
Springer; 2019. p. 63–74.

[120] Polikar R. The wavelet tutorial – part I, 2nd ed.
[121] Sovic´ A, Seršic´ D. Signal decomposition methods for

reducing drawbacks of the DWT. Eng Rev 2012;32(2):70–7.
[122] Cohen I, Raz S, Malah D. Orthonormal shift-invariant

wavelet packet decomposition and representation. Signal
Process 1997;57(3):251–70.

[123] Selesnick IW. Wavelet transform with tunable q-factor.
IEEE Trans Signal Process 2011;59(8):3560–75.

[124] Huang W, Sun H, Wang W. Resonance-based sparse signal
decomposition and its application in mechanical fault
diagnosis: a review. Sensors 2017;17(6):1279.

[125] Paraschiv-Ionescu A, Aminian K. Nonlinear analysis of
physiological time series. Advanced biosignal processing.
Springer; 2009. p. 307–33.

[126] Faust O, Bairy MG. Nonlinear analysis of physiological
signals: a review. J Mech Med Biol 2012;12(04):1240015.

[127] Acar E, Schenker C, Levin-Schwartz Y, Calhoun VD, Adali
T. Unraveling diagnostic biomarkers of schizophrenia
through structure-revealing fusion of multi-modal
neuroimaging data. Front Neurosci 2019;13:416.

[128] Lee M-H, Fazli S, Mehnert J, Lee S-W. Subject-dependent
classification for robust idle state detection using multi-
modal neuroimaging and data-fusion techniques in BCI.
Pattern Recogn 2015;48(8):2725–37.

[129] Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al.
Multimodal neuroimaging feature learning for multiclass
diagnosis of alzheimer's disease. IEEE Trans Biomed Eng
2014;62(4):1132–40.

[130] Zhu Q, Xu X, Yuan N, Zhang Z, Guan D, Huang S-J, et al.
Latent correlation embedded discriminative multi-modal
data fusion. Signal Process 2020;107466.

[131] Hunyadi B, Van Paesschen W, De Vos M, Van Huffel S.
Fusion of electroencephalography and functional
magnetic resonance imaging to explore epileptic network
activity. 2016 24th European Signal Processing Conference
(EUSIPCO). IEEE; 2016. p. 240–4.

http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0540
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0540
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0540
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0545
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0545
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0545
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0545
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0550
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0550
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0550
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0550
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0555
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0555
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0555
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0555
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0560
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0560
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0560
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0560
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0565
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0565
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0565
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0570
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0570
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0570
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0570
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0575
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0575
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0580
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0580
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0585
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0585
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0585
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0585
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0585
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0590
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0590
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0590
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0595
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0595
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0595
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0595
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0605
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0605
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0610
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0610
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0610
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0615
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0615
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0620
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0620
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0620
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0625
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0625
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0625
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0630
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0630
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0635
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0635
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0635
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0635
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0640
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0640
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0640
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0640
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0645
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0645
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0645
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0645
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0650
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0650
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0650
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0655
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0655
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0655
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0655
http://refhub.elsevier.com/S0208-5216(20)30023-1/sbref0655

	A comparative analysis of signal processing and classification methods for different applications based on EEG signals
	1 Introduction
	2 Taxonomy of the proposed study
	3 Comparison of functional neuroimaging techniques
	4 Brain rhythms
	5 Data collection studies
	5.1 Publicly available EEG datasets
	5.2 Local data acquisition studies

	6 EEG signal processing and analysis
	6.1 Pre-processing
	6.2 Feature extraction
	6.3 Postprocessing
	6.4 Result analysis

	7 Other research studies
	8 Research gaps and future directions
	9 Multi-modal fusion of brain signals
	10 Conclusion
	Authors contribution
	Conflict of interest
	Appendix A List of acroynms and abbreviations


